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PREFACE

There has long existed the need for a systematic treat-
ment and analysis of the measures of dispersion, or as some-
times mistakenly called the "accuracy" of patterns of shots,
which result from firing rifles at vertical targets, or guns
or missiles for ground impact. The problems encountered in
such evaluations are essentially statistical in nature and
should therefore be so treated. Moreover, due to the rather
wide applicability of an appropriate analytical treatment of
the measures of dispersion to a large class of firing prob-
lems, it is required that the whole subject matter of weapon
delivery accuracy should be approached in a fairly elemen-
tary manner. Therefore, in this book we have attempted to
accomplish these aims in order that many interested in the
firing of rifles, guns, missiles or arrows may be able to
make the comparisons required for the many and various meas-
ures of dispersion and also convert one to the other.

The basic statistical theory for most of the measures of
dispersion we will discuss has been developed by various in-
vestigators over many yvears. However, for some of the other
measures 1t was found necessary to develop either new theory
or suitable approximations in order to provide this more or
less complete treatment discussed herein. For those readers
who are interested and so inclined, therefore, we have rele-
gated to an Appendix the related statistical theory with the
hope that it will serve as reference material for any future
research.

I am indebted to Prof. E. S. Pearson for his permission
to publish the means and standard deviations of the univari-
ate range meter (Table 2) and also the mean deviation (Table
3) which are available in the Biometrika Tables for Statis-
ticians (Reference 14). Also, Prof. Pearson, on the behalf
of the Biometrika Trustees, and Prof. H. E. Daniels kindly
gave their permission to publish the means and standard de-
viations of the radius of the covering circle (our Table 7),
which appeared in Daniels' Biometrika paper (Reference 1).

The permission of the National Academy of Sciences to
use some of the moment constants (Table 10) of the bivariate
range based on studies of the late Prof. Samuel S. Wilks of
Princeton University 1in connection with the tracking data
analysis study (Reference 1l1l) is also appreciated. I am also
grateful to Prof. John W. Tukey for granting the permission
on behalf of Princeton University to include values from the
original Table 10, improved herein in accuracy by Ref. [16].

Ideas for this book came from a learned friend, the late
Mr. Philip G. Rust of the Winnstead Plantation, Thomasville,
Geogia, who had already investigated the use of the extreme
spread over many years and really was the one who stimulated
so much of the work behind this book. To Major General Les-

lie Simon's memory I express my genuine appreciation for his



many helpful suggestions and persistent encouragement, which
was so often required in the preparation of the manuscript.

Although the first printing of this booklet in 1964 has
seemed to serve its original purposes quite well, there also
appeared some need to update some parts of the material and
expand it in a few places. We have now included the Figure
of Merit (FoM), which has been rather widely used by various
small arms experts, and indeed seems very efficient on prac-—
tical grounds, and to the tables we have added the upper 5%
or 95% probability levels, or estimates of it, for the vari-
ous measures of precision. Finally, due to many requests for
confidence bounds on the CEP or circular Probable Error, we
have added in the space on page 50 the 1-0 upper confidence
bound for the true, unknown or universe CEP. One might note
also rearranged examples. Even though exact distributions
in probability for all of the bivariate measures of disper -
sion have been hard to come by, it is hoped that the various
approximations used are of sufficient accuracy to deal with
the practical aspects of target firings. It is mostly with
this hope in mind that we have decided to update the booklet
in the newer version for continuing usage.

Frank E. Grubbs

4109 Webster Road

Havre De Grace, Maryland 21078-1621
Second Edition, March 1991

Third Printing, December 1991

All analyses in this book may be carried out in term
or angular measurements such a
One mil is equal!

Note:
of distances on the target,
mils, degrees or "minutes of angle" (MOA).
to 2.375 MOA's.

For any number of rounds or sample sizes beyopd our tab-
ulated values, suggest dividing the whole sample into random
groups, perhaps in the order fired with group sizes of apout
ten or so. Then use the average determination for estima-
tion, as this often promotes efficiency. For the range, for-
for example, the best group size is about eight.
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1. INTRODUCTION

In the firing of rifles at vertical targets, or guns or
missiles for ground impact, there results a two-dimensional
pattern of shots or impact points which exhibit an amount of
scatter depending on the round-to-round aiming error and the
ordinary ballistic dispersion. The two-dimensional pattern
of shots gives rise to various measures of dispersion which
are used by riflemen and 'ballisticians to summarize the
"accuracy" of the pattern of shots. The measures of dis-
persion usually employed consist of the (sample) standard
deviation in each direction, the extreme horizontal dis-
persion, the extreme vertical dispersion, figure of merit
the mean horizontal deviation, the mean vertical deviation,
the mean radius, the extreme spread, the radial standard
deviation, the covering circle, and the "diagonal" of the
pattern. All of these measures of dispersion require sta-
tistical analysis, since they are really random variables
from one firing group to another. 1In the following, there-
fore, we will first define each of the above named measures
of dispersion and -‘then make a study of their statistical
properties, which is necessary to relate one measure to the
others and to judge their relative efficiency as estimators
of the parameters of accuracy and precision of fire.

A point of considerable importance we record here is
that the mean or expected values of all of the various mea-
sures of dispersion depend on the sample size or number of
rounds, some measures depending very markedly on the sample
size. For this reason, it becomes necessary to provide a
common basis for comparing one measure of dispersion with
another, and this is done by means of the population
standard deviation o (Greek letter "sigma"),which we will de-
fine and discuss in great detail. It is with the aid of the
large-sample standard deviation, o, or estimates of it, that
we are able to make the proper comparisons of the measures
of dispersion or "accuracy". Moreover, in applied work it
is generally better to quote the estimated population stand-
ard deviation ¢ rather than the measures of dispersion which
depend on sample size, since in this way we may correct for
bias, avoid confusion and promote standardization.

2. THE PATTERN OF SHOTS

In Figure 1, we have depicted the impact points or co-
ordinates of ten bullets fired on a vertical target. The
horizontal and vertical (or x and y) coordinates of the ten
impacts, in the order the bullets were fired from a rifle
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are: (1’2)’ (_3’_1): (1,_1): (2,4)’ (3:0), (4:3): (_1:3):
(2,-2), (-2,1), and (3,1).* The mean of the x's or horizon-
tal locations of impacts is X = 1, and the mean of the y's
or vertical positions is y = 1. Thus, the center of impact
(or C of I) of the ten rounds 1is located at (1,1). Note

that the C of I is at the radial distance of V1 + 1 = /2 =
1.414 from the origin, 0, or aimpoint. Later, we will de-
termine whether based on such scatter of impacts, this de-
viation of the C of I from the aim point is of any signifi-
cance, or otherwise merely an accidental variation,.

If another group of ten rounds were fired at such a tar-
get, then the pattern of impact .points would be somewhat
different and the new C of I of the rounds would be located
at a point different from the previous C of I, i. e. (1,1).
Thus, the pattern of shots on the target would vary from
group to group in a random manner, and moreover the C of I
and all of the measures of dispersion we will discuss in
the sequel are random variables due also to the inher-
ent dispersion and small sample size. It is our purpose to
study just how much variation is to be expected. and how the
measures of scatter such as the standard deviation, the mean
radius, the extreme spread, the mean deviation, the radial
standard deviation, etc., relate to each other and compare
in efficiency of estimation of the underlying '"'sigma'".

In what follows, we will deal with distances on the
target, although of course the distances on the target could
be converted to angles, in mils for example, 1if we know the
range to the target. Indeed, for small-arms fire +the dis-
persion in mils is nearly constant as a function of the
range to the target, and angular data would therefore rep-
resent a more general treatment. Since the conversion from
distances on the target to angular data is straightforward
and our illustrations are served better by use of bullet im-
pact positions on the target, we will approach the subject
by dealing with target impact positions, therefore.

Thus, we are now in good position to discuss the various
measures of "accuracy" or dispersion for patterns of shots.
We will start with locations and deviations of the projec-
tions of impact points on the horizontal and vertical axes,
since the (univariate) measures of scatter for such point
projections are of basic importance and lead rather natur-
ally to standards of comparison for all of the measures of

*Statistically speaking, these points may be considered to
be a random sample of size 10 from a bivariate normal popu-
lation, with perhaps equal dispersion in both directions. A
lot of ammunition could be called a "population”, or even a
"system" involving a rifle, the ammunition lot and a rifle -
man reaiming between rounds. Each may add some significant
scatter toc the impacts, especially the rifleman!



"accuracy'" (actually precision*) which are to‘be discussed.
Although the standard errors or standard deviations we will
discuss first are somewhat complex computationally, they are
nevertheless very efficient and of a fundamental character
for our study here,

3. VARIANCES AND STANDARD DEVIATIONS

If the sum of the squares of the deviations.of the x co-
ordinates (i. e. projections of points on a horizontal axis)
from their mean is divided by n = 10, the number of points,
we obtain the sample '"variance" of the horizontal or the x

coordinates. Thus, the sample variance si is given by

2 _1 12 _ 32 (1)
SX = o iil(xl X)
=75 11 + (-3-1)% + (1212 + L +(3-DP] = 4.8,

This value may best be calculated generally on a com-
puting machine without the accumulation of rounding errors
by means of the formula

_1 2 _ 2 2
Sy =73 Axx T ;§[n L x ()71 - (2

Note that the sum and sum of squares may be computed simul-

taneously on many pocket calculators. Thus, we see that

2 1 2, ar2,12,,2 +32] - [1-3+1+2+...+31%},
sy = Tool10[174(=-3) +1%+2%, . . +3%] [ (3)

= 7% - 2] = = 4.8.
= 155110(58) - (10)%] = 480/100 = 4.8

Note: s, may be computed directly on many pocket calculators.

* The term '"precision" refers to the dispersion of the bul-
lets about their own mean or C of I, whereas thg Ferm ”accg—
racy" includes not only the round-to-round precision but in
addition the bias or closeness of the true mean or.C.of I to
the point aimed at on the target. (The term_”pre0151on" de-
fined here moreover should not be confused W}tp another term
we define later and widely known as the precision of an un-
biased estimate.) These concepts will no doubt become much
clearer to the reader as we proceed to cover them fully.

The square root of the variance is known as the standard
deviation. Thus,

s, = [(/m)ix;, - ©%1Y2 = 78 - 2.10. (4)

In a like manner, we find the variance and standard de-
viation of the y's or projections of the (ten) impact points
on the vertical axis. Thus, we have

sy = 3 Ayy 3 [nZy] - (Zy;)7] (5)

= 55110127 + (<12 + <12 +...+ 121 - [2-1-14.. 411D

= 360/100 = 3.6

and sy = V3.6 = 1.90.

For this sample of 10 rounds, we get Sy = 2.19 and s_=

1.90. For another firing of ten such rounds, we might get,
for example, S, = 3.03 and sy = 2.10, so that these standard

errors Sy and sy vary randomly from one group to another.

Had there been a very large number of shots or impacts
on the target, then the standard deviations, Sy and sy,
would approach their large sample or true values, which we
will call Oy and cy, respectively.* Then these true standard

deviations, Oy and oy, for many, many thousands of shots are

called or are known as the population standard deviations
of the randomly varying x and ¥y projections, as compared to
the small sample or group values, Sy and sy. The population

values represent the true round-to-round standard devia-
tions in the horizontal and vertical directions for huge
lots of ammunition, for example. For samples of ten rounds,
or for other small sample sizes, note, as already mentioned,
that the sample standard deviations, Sy and s_, vary from

sample to sample of rounds fired at the target. Thus, for
small samples or small numbers of shots, Sy varies in a ran-

dom manner from firing to firing about the true population
standard deviation Os and the amount of variation depends

on the sample size or number of rounds, n. The quantity Gx’

as seen from its definition, is a measure of the round-to-
round variation of individual impact points in the horizon-

* The rea@er must be eternally aware! The most important and key param-
eter o is hardly ever attained, so that it is Yalways hidden” !!



tal direction. 1In an analogous manner to the description w
have given for the variation of an individual x we could ex
press the variation of the standard deviation, Sy from sam-

ple to sample by means of the standard deviation itself of a-
large number of such values for a fixed sample size. On the
average, s_, for fixed small sample sizes n does not exactly’

equal the population standard deviation Oge That is to say,'
for small samples Sy is a biased estimate of the population
cx. The bias is due to the fact that the computation of each
Sy involves deviations about the sample mean, not the popu-
lation mean, so that on the average Sy is somewhat less than
O The amount of bias depends on the sample size n, but ap-
proaches zero for large samples of size n,

It is known from statistical theory that the sample vari-
ance computed as -

s2 =282, (e

2 _ 1 =t -.2
S n-1 “x

— I (xi\- x)

= = A__/n(n-1)
X n-1 .4 XX '

which is based on n-1 "degrees of freedom" (d.f.) - (one de-
gree of freedom being used in the calculation of the sample

mean X as an estimate of the population mean) - is on the
average equal to the population variance oi , whereas the

sample variance computed from si = E(xi - i)z/n, and based
on the entire sample size n is on the average equal to the
quantity (n-1) oi/n, and is thus biased by —oi/n. (It might
seem curious to the reader, but it is true that Sx’ based on

the square root of formula (6), is not an unbiased estimate
of Oy for small sample sizes!)* One of our main interests in

this book is that of examining and expressing the measures
of dispersion in terms of the population standard deviation
Oy For a Normal or Gaussian distribution of shots on the

target, the mean value of Sy and the standard error of Sy

may be calculated as a multiple of the population (or large
sample) value of 0, as indicated in the APPENDIX ON RELATED

STATISTICAL THEORY. The mean values and standard deviations
of the sample standard deviation depend on the sample size
n and are given in Table 1. The 95% probability levels of |
s are also given. In Table 1 we drop the subscript x from |

*For nearly unbiased estimates of o, multiply the estimate va

by (n-.75)/(n-1), or s, by (n-.25)/(n-1).

s and o since the theory covers generally the relationship
between the sample and population standard deviations. Also,
for most rifle firings we can assume that ox = ay = g, say.*

Note in Table 1 that the mean values of s (or sx) do ap-
proach the true o (or cx) and hence become unbiased for very

large sgmple sizes. Also, the standard deviations of s _de~-
crease in value, becoming more precise for the very largest
sample sizes, as would be expected. o is an "unknown" value.

For rifle firing, as already mentioned, the population
standard errors, Oy and cy, for the horizontal and vertical
dirgctions, are about equal, with the result that we may use
a single value, o, to represent either of o, or Uy.

The pgpulation standard deviation, o, then is the true
or population standard error of an individual shot or bullet

in either the horizontal or the vertical direction. The
standard deviation of the mean or average of n shots for

e?ther the x's or the y's is 0//n and the standard error of
either of the sample standard deviations, s or s_, for

n rounds is approximately equal to 0/v2n. Exact values of
the standard deviations of Sy and s_ (i.e. s, generally) are

given in the fourth column of Table 1. Thus, for the ten
shots indicated on the target, the standard deviation of
either component of the C of I (%=1 or y=1) is 0/Y10 and the

standard deviation of S, or sy is about o/v20.

Example 1. Using the data for the firing represented in
Figure 1, find the estimates of Oyr cy, and o,

Answer: Since n = 10, using Table 1, we find

Estimate of Oy = S,/.9227 = 2.19/.9227 = 2.37
= 2.19 x 1.084 also.
Estimate of o = s,/.9227 = 2.06 = 1.90 x 1.084 also.

To find the estimate of o, assuming Oy and oy are about

equal, we could take the average of 2.37 and 2.06, or better
still, since the variances are additive, use

1/2

[.5(s2 + si)] /.9227 = VE.3/.9227 = 2.22.

Example 2. Find the standard error of the components of the
C of I. Find also the standard deviation of either of the

* The case Oy # oy is discussed briefly in the APPENDIX.



TABLE 1
TABLE OF MEANS OR EXPECTED VALUES AND STANDARD DEVIATIONS OF

s = /z(xi-i)z/n FOR A NORMAL POPULATION

Reciprocal of

Sample Mean Value Mean Value Standard 95% Prob
Size of s Coefficient Deviation Level of s
of s
n E(s/o) * 1/E(s/0) SD(s/c) ** 8 g5/0
2 . 5642 1.772 . .4263 1.39
3 .7236 1.382 .3782 1.41
4 L7979 1.253 . 3367 1.40
5 . 8407 1.189 .3052 1.38
6 . 8686 1.151 .2808 1.36
7 . 8882 1.126 .2612 1.34
8 . 9027 1.108 . 2452 1.33
9 . 9139 1.094 .2318 1.31
10 .9227 1.084 .2203 1.30
11 . 9300 1.075 .2104 1.29
12 . 9359 1.068 .2017 1.28
13 . 9410 1.063 .1940 1.27
14 . 9453 1.058 .1871 1.26
15 . 9490 1.054 . 1809 1.26
16 .9523 1.050 .1753 1.25
17 . 9551 1.047 .1701 1.24
18 9576 1.044 1654 1.24
19 9599 1.042 1611 1.23
20 9619 1.040 1570 1.23

Note: * E(s/0) = Expected value of. ** gD = Stand. Dev.

The mean values and the standard deviations in this table
and the following tables are in terms of a population stan-
dard deviation of unity. Hence, all tabular entries in the
second and forth columns are to be multiplied by the popu-
lation standard deviation ¢ or an estimate of it. For the
third column, if we let the expected value of s be E(s) =
co, say, then the reciprocal of the mean value coeff%cignt
is 1/c, and the entry in the third column when multiplied
by s results in an unbiased estimate of o. [c = E(s/0)]

Standard deviations of sample statistics or variables given
in this and the following tables are calculated about their
. own expected values, and hence not about unbiased estimates
of the parameter unless so indicated.

The fifth column gives the 95% probability level or tpe up-
per 5% point of the distribution of s for a test of signif-
icance, if so desired. Check s over stated ¢ with table.

sample standard deviations, Sy and s

Answer: Now X = y = 1. The standard deviation of the
components X and y of the C of I are then given by oz =
oy = g/vn = 0//10 = 2.22/Y10 = .70. (The standard devi-

ation of an average is equal to the standard deviation
of an individual observation divided by the square root
of the sample size.) The standard deviation of either
of S, or sy is approximately given by the quantity oy =

o/v2n = 2.22/v20
1 is .2203(2.22) .49 in this particular case,

We begin to see then that the population or large-
sample standard deviation, o, for an individual shot is the
key parameter for the study of dispersion and accuracy. As
a matter of fact, o, the standard error of an individual, is
the real basis or standard of comparison for all the meas-
ures of precision and '"accuracy". Indeed, as we will see,
the average values of each of the various measures of
"accuracy'" turn out to be multiples of o. Similarly, stan-
dard deviations of the measures of dispersion or "accuracy"
turn out to be fractions of o also.

.50. The exact value from our Table

With the definition of and an appreciation for the im-
portance of the population standard deviation ¢, and also a
recognition of its usefulness, we are, therefore, now ready
to proceed with the analysis of the other measures of dis-
persion and "accuracy', First, however, we will discuss the
two dimensional measure of dispersion called the Circular
Probable Error (CEP or CPE), and the one directional measure
of dispersion or precision called the Probable Error (PE).

4. THE CIRCULAR PROBABLE ERROR (CEP or CPE)
AND THE PROBABLE ERROR (PE)

A measure of dispersion (precision) which is widely used
for firings at targets is the Circular Probable Error, which
is designated by CEP or CPE. The CEP is defined as the rad-
ius of the circle about the (true) center of impact (C of I)
of the rounds, or sometimes about the point of aim, which,
includes one-half or 50% of the shots fired upon the target.
This circle has a radius of 1.1774c = the CEP, and is there-
fore the 50 percent probability circle. Thus, the standard
deviation ¢ is also quite basic to the determination of the
CEP, and moreover an efficient estimator of the quantity we
designate as ¢ will likewise give an efficient estimator of
the CEP. (The Spherical Probable Error or SEP = 1,53820¢)

If all of the shots are projected on the x-axis (or the
y-axis), the interval about both sides of the mean which in-
cludes 50% of the shots is called the Probable Error or sim-
ply the PE. That is, the interval from the true but unknown



mean minus the PE to the average plus one PE contains 50% of
the shots in the x (or in the y) direction, considering a
very large number of shots. The Probable Error is actually
.67450, i. e. PE = .67450. The PE is a one-directional or a
univariate measure of dispersion, whereas the CEP is a two-
directional or bivariate measure of precision. *

For the two-dimensional case and also for unequal stan-
dard deviations, or Oy # oy, in the x and y directions, then

Grubbs [6] gives a good approximate formula for the CEP that
is of sufficient accuracy for most practical cases. (See the
APPENDIX.) A confidence bound for the CEP appears of page 50.

5. THE EXTREME HORIZONTAL DISPERSION (EHD)
AND THE EXTREME VERTICAL DISPERSION (EVD)
[The Univariate Range (R)]

These are very simple measures of dispersion and by far
the easiest to compute. If we project the impact points on-
to the horizontal (x) and the vertical (y) axes, then we see
that the EHD is simply the difference between the greatest
and the least values of the x points, or farthest right mi-
nus farthest left projected points, and the EVD is given by
the highest minus the least values of y projected points. In
this connection, we see from Figure 1, the farthest x point
to the right is x = 4, i. e. the point (4, 3) and the left-
most point or value of x is x = -3, i. e. the value of x for
the point (-3, -1). Therefore, the EHD = 4 - (-3) = 7. For
the EVD, we see in a like manner, the maximum variation, the
range or maximm dispersion for y occurs for the two y points
(2, 4) and (2, -2). Thus, the EVD = 4 - (-2) = 6. By sim—
ply arranging the x's (or the y's) in increasing order, then
one sees that the formula for the range or the maximum dis-
persion (or the EVD or EHD) is

n

The EHD and the EVD are thus terms of the rifleman which
are widely known statistically as the "maximum dispersion”,
the "maxumum variation" or the "range" of the observations.
Note in particular that the EHD, EVD, range, etc., are uni-
variate or one-directional measures of the scatter of shots.

R=x = Xy where Xy <Xy 2 %3 < ... < XK. (7)

The probability distribution of the range, and hence the
EHD or EVD, has been the subject of very extensive study by
Dederick [2], Hartley [7], Pearson [13], and Tippett [171.
The sample range (EHD) for small samples such as for example
n=5o0rn-=10 is a random variable, as was true for the Sy

. sample statistic discussed above in Section 4. We point out
that the amount of variation in the EHD from any one sample
to another depends, of course, on the sample size and clear-
ly also on the value of the population sigma, ¢. In Table 2

* Why don't riflemen use the CEP? Or quote the unbiased estimate
of sigma? Learn that o measures round-to-round variation-imprecision—
but accuracy includes also offset of aim point! Study pages 43-45.

we give the mean or expected values and the standard devia-
tions of the range, i. e. the EHD or EVD, as a multiple of ¢
our unknown population standard deviation. The 95% or that
is the upper 5% probability levels of the range also appear
in Table 2. An example would be instructive for the range.

Example 3. By use of the computed values of Sy and Sy’ pre-

dict the EHD and the EVD and compare with observed values of
the quantities.

Answer: The estimate of Oy is sx/.9227 = 2,19/.9227 =

2.37. Then for a sample of size 10, we find from Table
2 that the expected value of the EHD would be 3.078 Sy =

(3.078)(2.37) = 7.3, as compared to the actual observed
value of 7 for the EHD, showing acceptable prediction,.

In a like manner, 3.078s_/.9227 = (3.078)(1.90)/.9227=

6.3, as compared with the Observed value of 6 for the
EVD.

Actually, instead of using Sy and sy individually, it is

seen thgt we may just as well, under the assumption and dem-
onstration of a circular distribution, or Oy = Gy = ¢, adopt

the estimate of o = 2,22 of Example 1 and multiply it by the
factor 3.078 for 10 rounds, giving 6.8 for the estimate of
either of EHD or EVD, as compared to the observed values of
7 and 6, respectively. Such differences are expected and as
a matter of fact attributable to random variations or fluct-
uations for the small sample size of 10 used here.

Example 4. Estimate the population ¢ by using a rather pop-

ular measure of precision or scatter of the shot known wide-
ly as the "Figure of Merit'" (FOM), which is simply the aver-
age of the EHD and the EVD, i, e.

FOM = (EHD + EVD)/2 = (Rx + Ry)/z . * (7a)
Find also the standard error of this estimate.
Answer: Now the FOM or the average of the EHD and EVD
ig (7 + 6)/2 = 6.5. From Table 2 for the given sample
size of 10 rounds, the mean value of the range is 3.078

times 0. Therefore, the estimate of ¢ is 6,5/3.078 (or
.3249 x 6.5) = 2.11. The estimated standard error for

this unbiased estimate is given by knc/dn/§ = (.7971) x

(2.11)/10(3.078)(1.414)] =.39. The V2 used here in the
denominator comes from the fact that we are now dealing
with the average of two ranges, i. e. the standard de-
viation of the average of two individual observations

* See footnote, page 20



TABLE 2

TABLE OF MEAN VALUES AND STANDARD DEVIATIONS OF THE RANGE R

= EHD or EVD
Sample Mean Value Reciprocal of Standard 95% Prob
Size of the mean value Deviation Level of
coefficient the
Range Range
SD(R/c)
n E(R/o) = dn l/dn - kn R.95/°
2 1.128% .8862 .8525 2.77
3 1.693 . 5908 . 8884 3.31
4 2.059 .4857 .8798 3.63
5 2.326 . 4299 .8641 3.86
6 2.534 .3946 . 8480 4.03
7 2.704 .3698 .8332 4,17
8 2.847 . 3512 .8198 4,29
9 2.970 .3367 .8078 4.39
10 3.078 .3249 .7971 4,47
11 3.173 .3152 .7873 4,55
12 3.258 .3069 .7785 4,62
13 3.336 .2998 .7704 4.68
14 3.407 .2935 .7630 4.74
15 3.472 . 2880 .7562 4.80
16 3.532 . 2831 .7499 4.85
17 3.588 .2787 .7441 4.89
18 3.640 .2747 .7386 4.93
19 3.689 .2711 .7335 4.97
20 3.735% . 2677 .7287 5.01

* Note that the mean or expected values of the range show
that it is very sensitive to sample size, the value for
n = 20 being over three times that for n = 2.

Tabular entries in the second, fourth and fifth columns
are to be multiplied by the population standard devia-
tion or an estimate of it. The values here are all re-
produced from the Biometrika Tables [14] with permission
of Prof. E. S. Pearson.

is o//2, and the standard deviation of the average of two
ranges 1is knc//ﬁ. The computed figure of .39 ind}cates
that this estimate of sigma is subject to this particular
standard error, whereas the standard deviation of an indi-
vidual observation is much larger, being 2.22.

6. THE MEAN HORIZONTAL DEVIATION (MHD) AND THE
MEAN VERTICAL DEVIATION (MVD)
(The Mean Deviation)

These measures of dispersion are also known as the mean
deviation from the mean and the mean absolute deviation. The
mean horizontal deviation (MHD) is defined as the average of
the unsigned or absolute (positive) deviations from the sam-
ple mean of the x components. That is to say the MHD is

MHD = (1/10)[|1-1| + |-3-1]% + |1-1| + ... + [3-1|1 = 1.8.

In a like manner, the mean vertical deviation (MVD) is the
average of the unsigned deviations of the y's measured from
their own sample average. Thus, for the y's we have that

MVD = (1/10)(1 + 2 + 2 + ..., + 0) = 16/10 = 1.6.
The algebraic formula for the mean deviation (MD) is

n
MD = I |xi - X|/n . (8)
i=1

The sample mean horizontal and mean vertical deviations
are rather easy to calculate as compared to the sample stan-
dard deviation, and moreover, the mean deviation is nearly
as efficient as the standard deviation of the sample in es-
timating the population standard deviation, o. The mean de-
viation has been investigated by Godwin [4]. In Table 3, we
give the expected or mean values of the sample mean devia-
tion and also the standard errors of the MD. The 95% proba-
bility levels of the mean deviation are also included.

Example 5. Estimate o from the sample MHD and MVD. How pre-
cise is the estimate?

Answer: Since the dispersions in the x and y directions
are about equal, we may as well use the average of the
MHD and MVD to gain precision, i. e. the estimator of o
is taken as ¢ = (1/2)(MHD + MVD)/(.7569) = 1.7/(.7569) =
2.25, Note how this compares with the estimate 2.22, a
quantity which was estimated by using the more efficient
estimators, Sy and sy to determine o. The precision, or

standard error, of the unbiased estimate of ¢ based then
on the average of the MHD and MVD is (.1894/.7569/2)¢ or
(.1894)(2.25)/(.7569)(1.414) = 0.40, or hence about the
same precision as we obtained for the FOM, or Figure of
Merit for the sample of size 10.

Example 6. What is the relation between the MHD and the EHD

on the average? Hence, predict the size of the EHD from the
MHD for say, 15 rounds, thereby showing a further use of the
tables.

* |-3-1| means positive value of, which is 4, etc.



TABLE 3
TABLE OF EXPECTED VALUES AND STANDARD DEVIATIONS OF THE MEAN

HORIZONTAL DEVIATION (MHD) AND MEAN VERTICAL DEVIATION (MVD)
) [The Mean Deviation (MD)]

Sample AMean Value Reciprocal of Standard 95% Prob

Size of MD Mean Value Deviation Level
Coefficient of MD of .

n E(MD/0) 1/E(MD/o) o (MD/0) MD/o
2 .5642 1.772 .4263 1.39
3 .6515 1.535 .3419 1.28
4 ,6910 1.447 . 2970 1.22
5 L7137 1.401 . 2663 1.19
6 .7284 1.373 .2436 1.16
7 .7387 1.354 .2258 1.14
8 . 7464 1.340 .2115 1.12
9 .7523 1.329 .1996 1.10
10 . . 7569 1.321 .1894 1.09
11 . 7608 1.314 .1807 1.07
12 - . 7639 1.309 .1731 1.06
13 .7666 1.304 .1664 1.05
14 . 7689 1.301 .1604 1.04
15° L7708 1.297 .1550 1.04
16 7726 1.294 1501 1.03
17 L7741 1.292 . 1457 1.02
18 L7754 1.290 1416 1.02
19 .7766 1.288 .1378 1.01
1.286 .1344 1.01

20 L7777

‘(Tabular entries in the second, fourth and fifth columns are
to be multiplied by the population sigma. All tabular values
given above are reproduced from the Biometrika Tables [14]
with the permission of Prof, E. S. Pearson)

* To illustrate a use of the 95% probability level values of
a sample statistic, suppose that we take as the estimate of
sigma the value of 2.22 we obtained by using the average of
the variances in the two directions as in Example 1. Then we
now suppose that in a further shooting of, say, 12 rounds we
obtained an MVD of 2.00. Could we accept the value of 2.22
as the population sigma of the new target firing?

The answer is yes, since for 12 rounds the 95% probability
level estimated for the new firing is 1.06 x 2,22 = 2,35, a

. value larger than expected of the random MVD = 2.00.

Answer: From Tables 2 and 3 for 10 rounds, the ratio of
expected values of EHD and MHD is 3.078/0.7569. = 4.07.
Hence, using the computed value of MHD = 1.8, we multi-
ply this by 4.07 and get 7.32, as compared to an EHD of
7 which was observed for the original data of Figure 1.
For n = 15 rounds, we would predict: EHD = 3.472(sigma)
= 3.472(1.8/.7569) = 8.3, a larger value, of course.

Example 7. For a sample of size 15, what is the relation-

ship between the average values of the sample mean deviation
and the sample standard deviation? )

Answer: From Tables 1 and 3, we see for n = 15 that the
ratio of the mean value of the sample meah deviation -to
that of the standard deviation is .7708/.9490 = .812, or
on the average the mean deviation (MD) is 18.8% smaller
than s, the sample standard deviation.

The measures of dispersion discussed so far, except the
CEP, are for either the x or the y direction separately, and
hence they are one-directional or univariate measures of the
dispersion or scatter of shots, as we have previously indi-
cated. We now turn to measures of dispersion of the impaects
which take into account both the x and y directions simulta-
neously. The measures of dispersion or precision which in-
volve both the horizontal and vertical directions in a single
estimate of the population ¢ are known as bivariate or two-
directional sample measures or statistics. As will be seen
in the sequel, the bivariate measures are more precise than
the one-directional or univariate values (sample statistics)
in estimating the unknown o, no doubt as would logically be
expected since the sample size in effect may be considered
to be "doubled", especially due to equal amounts of scatter
in the two directions. Thus, we see rather easily that the
bivariate estimates are far more "efficient".

For the two-directional measures, we will discuss first
the Radial Standard Deviation (RSD), which involves the sum
of the sample variances in the x and the y directions, this
turning out to be the most efficient estimator of sigma.

7. THE RADIAL STANDARD DEVIATION (RSD)

The Radial Standard Deviation or RSD is defined for our
purposes here as the square root of the total sum of squares
of the deviations in each of the x and y directions from the
respective sample means, divided by n, the number of impacts
or points. We see therefore that the RSD is really given by
the square root of the sum of the sample variances in x and

2

\ 2
y, i. e. s and sy.



Thus, the formula for the radial standard deviation is

_ ., 2 2.1/2
= (s, + sy) . (9)

Since si = 4.8 and s? = 3.6 for the 10 shots on the Figure 1
target, then it can be seen that the RSD is calculated as

BSD = ((1/n) [2(x;-%)2 + 2(y;-5)?1) /2

RSD = v4.8 + 3.6 = V8.4 = 2,90,

It should be noted that since we take the square root of
the sum of si and sz, then the RSD should on the average be
expected to be about v¥Z times the standard deviation of the
points of impact in either the horizontal or vertical direc-
tion. As previously indicated, we see now that the rad}al
standard deviation takes into account all of the information
on dispersion (observations) in both directions.

The radial standard deviation has been studied by Grubbs
[5], and the first two moments, or the mean and standard de-
viation, are given in Table 4, along with the 95% probabili-
ty levels of the RSD distribution.

We should keep in mind that the RSD is the most efficient of
the estimators of the population sigma we could use concern-
ing the analyses of target dispersion, but it is also some-
what more involved. (This makes little difference with the
modern-day pocket calculator).

As a point of some practical interest, we record at this
time that the probability distribution of the radial vari-
ance, i. e. the square of the RSD, is theoretically well es-
tablished, and it is therefore possible to compare the dis-
persion patterns of two targets or two riflemen in a rather
simple manner. The reader is referred to the Appendix con-
cerning this.

Example 8. For the 10 rounds fired at the target, find the

estimate of sigma and then use it to predict the size of the
observed extreme horizontal dispersion (EHD) or the extreme
vertical dispersion (EVD).

Answer: From Table 4 for n = 10 rounds, the estimate of
o is given by RSD/1.323 = RSD(.7559) = 2.90/1.323 = 2.19
as compared to the value 2.22 previously found in Exam-
ple 1. (Slight differences may be expected for the two
different approaches.) The prediction of the EHD or a
EVD is then 3.078 x 2,19 = 6.7 versus the 7 for EHD that
observed or the 6 for the EVD. The number 3.078 may be
found in Table 2 for n = 10.

Example 9. Since the sample radial standard deviation takes

into account both the dispersions in the horizontal and the
vertical directions, is it not more efficient than either of
the univariate sample standard deviations, S, or sy, assum-

ing, of course, that ox = gy = g?

Answer: We define efficiency here as the ratio of the
variance of the best unbiased estimator (the RSD) to the
variance of any other unbiased estimator. Since the va-
riance is the square of the standard deviation, then we
see using Table 4 for a sample size of 10, or any other
sample size in fact, that the variance of a unbiased es-
timate of ¢ based on the RSD may be found by simply tak-
ing the square of the ratio of the standard deviation of
the sample statistic to its mean value. This means that
the definition of precision of any unbiased estimate is
actually the coefficient of variation (times the popula-
tion ¢). As a general definition of "precision", then,
we will take it as being the ratio of the standard error
of any sample statistic or estimator to its mean value,
this ratio being finally multiplied by the population o.
(Others often define precision differently, but we pre-
fer here to use only first powers for simplicity and not
either squares or reciprocal of squares, as we will soon
see in the sequel.) Thus, for the 10 rounds fired wupon
the target and from Table 1, for example, the estimator
sx/.9227 gives an unbiased estimate of o, and the ratio

.2203/.9227 = ,239, when multiplied by the population g,
will be referred to as the "precision", since it is the
standard error of the unbiased estimator using the sam-
ple standard deviation in either the x or y direction a-
lone. In a like manner, the precision of the RSD may be
found from Table 4 for 10 rounds as being .2219/1.323 =
.168 (times ¢). Therefore, the .239 versus the .168 in-
dicates that the RSD is considerably more precise than a
one-directional estimator of ¢ such as the sample stan-
dard deviation Sy (or sy).

Finally, the efficiency of Sy (or s_) as compared to

the RSD is the square of the ratio .168/.239 = .70, this
turning out to be .49, or about 50%, say. That is, the
univariate Sy (or Sy) is only 50% as efficient in esti-

mating the population sigma as is the bivariate measure
RSD. (More will be discussed on this subject later.)

Example 10. Estimate the CEP by using the "efficient" RSD.

Answer: The estimate of o based on the RSD is 2.19 from
Example 8. Therefore, the estimate of the CEP = 1,1774¢
= (1.1774)(2.19) = 2.58. A circle of this radius about
the center of impact (C of I) will include approximately
50% of the shots. See p. 50 for a confidence bound con-
cerning the CEP.



TABLE 4
TABLE OF MEAN VALUES AND STANDARD DEVIATIONS OF THE RADIAL
STANDARD DEVIATION (RSD)

Sample Mean Value Reciprocal of Standard 95% Prob
Size of RSD Mean Value Deviation Level
Coefficient of RSD
n E(RSD/c) 1/E(RSD/o) o(RSD/o) FSD g5/0
2 . 8862 1.128 .4633 1.73
3 1.085 L9217 . 3940 1.78
4 1.175 . 8511 . 3455 1.77
5 1.226 . 8157 .3108 1.76
6 1.259 L7943 .2848 1.75
7 1.282 .7800 - . 2643 1.73
8 1.300 . 7692 .2478 1.72
9 1.313 .7616 .2338 1.71
10 1.323 . 7559 .2219 1.70
11 1.332 .7508 .2118 1.69
12 1.339 .7468 .2028 1.68
13 1.345 .7435 . 1949 1.67
14 1.350 . 7407 . 1881 1.67
15 1.354 . 7386 .1817 1.66
16 1.358 . 7364 .1760 1.65
17 1.361 .7348 .1708 1.65
18 1.364 .7331 . 1660 1.64
19 1.367 . 7315 .1617 1.64
20 1.369 .7305 .1576 1.63

(Tabular entries in the second, fourth and fifth columns are
to be multiplied by the population ¢, or an estimate of it.)

8. THE MEAN RADIUS (MR) *

To compute the Mean Radius (MR), we find merely the av-
erage of the radial distances between the observed center of
impact (C of I) of the rounds and all of the impact points
on the target. Since the C of I for the 10 rounds is loca-
ted at (1; 1) and the points of impact in the order of fir
ing are (1: 2): (_3; —l); (1: _1)’ (2: 4); (3; 0)) (4: 3):
(-1, 3), (2, -2), (-2, 1) and (3, 1), it is easily seen that'y
the radial distances could be measured directly and swiftly]

on the target, and are in fact 1, v20 = 4,47, 2, V10 = 3.16,
V5 = 2,24, /13 = 3.61, V8, = 2.83, v10 = 3.16, 3 and 2. For
example, the distance between the C of I (1, 1) and the par

ticular point (2, -2) is /?1—2)2 + [l--(—2)]2 = /10 = 3.16

* See formula (27), p. 55

The average of these ten radial distances is 2.75, which is,
of course, the mean radius, MR, We remark that each of the
radii are easily measured with a ruler on the target. More-
over, as we shall see, the mean radius is very efficient for
estimating the population sigma.

The mean values and the standard deviations of the mean
radius are derived in the Appendix, and the computed values
for samples of size 2 through 20 are given in Table 5. They
depend, of course, on the number of rounds, n, and the popu-
lation o. TFor very large sample sizes, it can be shown that
the mean values of the MR will approach 1.253c. For n = 15,
the expected value of the MR is already 1.211c, i. e. is off
by only about 3% from the large sample value.

Example 11, The mean radius (MR) of the 10 shots which were

fired at the target is 2.75. The estimate of ¢ based on the
mean radius is therefore, using Table 5 for n = 10, given by

a o0 = (.841)(2.75) = 2.31, and this compares with the value
of 2.19 obtained by using the RSD.

Example 12. What is the relative efficiency of the estimate

of o based on the MR in Example 117?

Answer: From Table 5 for the MR, the standard error of
the unbiased estimate for n = 10 is ,2063/1.189 = 0.174,
whereas from Table 4 for the RSD, the most efficient es-
timator, the equivalent standard error is .2219/1.323 or

0.168. Hence, the efficiency of the MR is (.168/.174)2=
0.94 or 94%, which is very good indeed.

9. THE EXTREME SPREAD (ES) OR THE BIVARIATE RANGE

The Extreme Spread, known as ES, or the bivariate range,
is defined as the maximum of the distances between all pos-
sible pairs of points or shots on the target. Note that in
the figure the pairs of impact points giving rise to the ex-
treme spread are the two shots located at the coordinates of
(-3, -1) and (4, 3). The numerical value of the ES is hence
the quantity

ES = /[4-(=3)12 + [3-(-1)12 = /72 + 42 = /€5 = 8.06.

The extreme spread, it should be noted, is very easy to meas-
ure with a ruler on the target and it is also rather easy to
compute. Indeed, the ES provides a very rapid measure of an
estimate of dispersion for the two-dimensional scatter dia-
gram, when divided by the appropriate constant for the sam-
ple size used. The extreme spread, like the other measures
of dispersion, is also a random variable, i. e. it varies in
a haphazard manner from one group of shots to another. The



TABLE 5
TABLE OF MEAN VALUES, STANDARD DEVIATIONS AND THE 95% PROBA-
BILITY LEVELS OF THE MEAN RADIUS (MR) *

Sample Mean Value Reciprocal of Standard 95% Prob
Size of MR Mean Value Deviation Level of MR
n E(MR/o) 1/E(MR/g) SD(MR/c) MR 95/0
2 . 8862 1.128 .4632 1.73
3 1.023 . 9775 .3738 1.68
4 1.085 .9217 . 3243 1.65
5 1.121 . 8921 . 2906 1.62
6 1.144 . 8740 . 2656 1.60
7 1.160 . 8621 . 2461 1.658
8 1.172 . 8532 . 2304 1.56
9 1.182 . 8460 .2174 1.565
10 1.189 . 8410 .2063 1.54
11 1.195 .8368 .1968 1.53
12 1.200 .8333 .1885 1.52
13 1.204 . 8306 .1811 1.51
14 1.208 . 8278 .1746 1.50
15 1.211 . 8258 .1686 1.50
16 1.214 . 8237 .1633 1.49
17 1.216 . 8224 .1585 1.48
18 1.218 . 8210 . 1541 1.48
19 1.220 .8197 .1500 1.47
20 1.222 .8183 .1462 1.47

(Tabular entries in the second, fourth and fifth columns are
to be multiplied by the population ¢, or an estimate of it.
These values were calculated from the theory covered in the
Appendix for the estimation of the mean values and standard
deviations of the MR as a function of the sample size n. The
95% probability levels for the MR were determined from a two
moment fit of a Chi variate due to Patnaik in Reference [12]
This two moment fitting procedure is explained in the Appen-
dix, Section H, for the approximate theory concerning which
we have used for the Diagonal - See also Section 11 below.)

Note: The mean radius MR is a measure (the average) of radi-
al distances. There is also the so-called '"radial error", a
measure based on the square root of sums of squares in the x
and y directions, and is described, for example, by Weil in
peference [18].

* We understand the British and some of its Commonwealth ri-
flemen define our MR as their "Figure of Merit". We like the
more descriptive "Mean Radius".

ES should not be confused with either the diameter (=2RC) of
the 'covering circle" in Section 10 or the "diagonal" (D) of
the pattern of shots discussed in Section 11 in the sequel.

In Table 6, we give the mean values, their reciprocals,
the standard deviations and the 95% probability level values
of - the extreme spread. The mean values and the standard er-
rors were originally computed by the late Prof. Samuel Stan-
ley Wilks of Princeton University in connection with a study
of the Panel on Tracking Data Analysis, Reference [11]. For
the original calculations, a Monte Carlo sampling procedure
was used to determine the means and standard deviations for
the ES. These particular calculations were programmed on an
IBM 7090 computer using the Fortran language by Prof. Wilks
and Mr. Paul Raynault of Princeton University. In 1975, an
improved Monte Carlo experiment was conducted by Taylor and
Grubbs [16] using much larger sample sizes for establishing
both the moments and the percentage points of the distribu-
tion. Note that the mean value of the ES is very sensitive
to the sample size.

Example 13. By using the extreme spread, ES, find the esti-
mate of the normal population sigma which 1s unbiased.

Answer: The unbiased estimate of o = (.262)(8.06) = 2.1

Example 14. What is the standard error of the estimate that
we have calculated in Example 13?
Answer: In Example 9 we learned how to compute the sig-

ma of an unbiased estimate. Using this procedure, it is
easy to find from Table 6 using a sample size of 10 that

Standard error of ES/3.813 = (.745/3.813)(2.1) = 0,41

Example 15. What is the efficiency of the  extreme spread
for 10 rounds?
Answer: As computed previously in Example 9 for the sam-

ple standard deviation, we have that the efficiency of
the extreme spread for n = 10 rounds is given by

(.2219/1.323)2 ] (.745/3.813)2 = ,74 or 74%,
where we have used Tables 6 and 4.

10. THE RADIUS OF THE COVERING CIRCLE (RC or RCC)

The Covering Circle is defined as the smallest circle of
all such circles which contains on it or inside it each and
every point of impact. The radius of the covering circle or



TABLE 6
TABLE OF MEAN VALUES, STANDARD. DEVIATIONS AND THE 95% PROBA-
BILITY LEVELS OF THE EXTREME SPREAD (ES)

Sample Mean Value Reciprocal of Standard 95% Prob
Size .of ES Mean Value Deviation Level of ES
n E(ES/o) 1/E(ES/o) SD(ES/o) ES 95/0
2 1.772 .564 . .932 3.462
3 2.406 .416 . 887 3.984
4 2.787 . 359 .856 4.285
5 -3.066 . 326 .828 4.519
6 3.277 .305 .806 - 4,670
7 3.443 .201 .783 4,808
8 3.582 .279 771 4,937
9 3.710 . 270 .754 5.029
10 3.813 . 262 . 745 5.118
11 3.888 .257 .735 5.174
12 3.964 .252 -.725 5.229
13 4,039 .248 .714 5.285
14 4.115 .243 .704 5.340
15 A 4.190 .239 .694 5.396
16 4.242 .236 .689 5.443
17 4,295 ‘ .233 .684 5.490
18 4,347 .230 .678 5.536
19 4.399 . 227 .673 5.583
20 4.452 ‘ .225 .668 5.630
25 4.639 .216. .650 5.790

(Tabular entries in the second, fourth and fifth columns are
to be multiplied by the population o, or an estimate of it.
Since these are Monte Carlo values, the third decimal places
may be in error.) :
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its diameter provides a fairly rapid measure of the disper-
sion of the shots on the target. The diameter of the cover-
ing Circle is not generally the same as the Extreme Spread
or the bivariate range, it should be noted. Daniels [1] has
made a study of the radius of the Covering Circle, and so we
give in our Table 7 the key moment constants which are taken
from Daniels' Biometrika paper [1]. Letting RCC (or RC) de-
note the radius of the Covering Circle, then expected values
and also standard deviations of the RCC are given in Table 7
along with the 95% probabllity levels of the distribution.

The RCC is.also a random variable, as it varies from one
group of shots to another in a random manner, depending very
much on the size of the population o, of course.

<.
1

: TABLE 7 .
TABLE OF MEAN VALUES, STANDARD DEVIATIONS AND THE 95% PROBA-
BILITY LEVELS OF THE RADIUS OF THE COVERING CIRCLE :(RC)

Sample Mean Value Reciprocal of Standard - 95% Prob
Size of RC -Mean Value . Deviation Level of RC
'n E(RC/0) 1/E(RC/g) SD(RC/a) RC 5/0

2 .8862 1.128 .4632 1. 731
3 1.211 . 8258 T ,4461 2.000
4 1.409. .7097 .4274 2.157
5 1.548 .6460 .4123 2.268
6 1.655 .6042 .4001 ' 2,352
7 1,742 . 5741 .3901  2.421
8 1.814 .5513. .3816° ' 2.478

) 1.876 .5330 .3743  2.527
10 1.929 .5184 . 3680 2.570
11 1.977 .5058 .3625 2.608
12 2.020 .4950 . 3575 2.642
13 2.058 .4859 . 3528 2.673
14 2.093 .4778 . 3484 2.702
15 2,125 .4706 . 3440 2.728
16 2.153 .4645 .3411 2,749
17 . 2.180 .4587 .3384 2.770
18 2.206 .4533 .3357 2.791
19 2.231 .4482 .3333 2.812
20 . 2.255 . .4435 .3309 2.833
30 2,427 .4120 . .3126 2.975
40 2.543 .3932 . 3010 3.071
50 2.629 . 3804 .2024 - 3.143

100 2.881 .3471 .2704 3.358

(Tabular entries in the second, fourth and fifth columns are
to be multiplied by the population ¢ or an estimate of that
0. The values of Table 7 were obtained from Daniels' Biome-
trika paper [1l] with permission, and entries for n = 16 -~ 19
were obtained by interpolation. For interested readers, the
diameter of the Covering Circle, DC or DCC = 2 RCC, so that
the mean values of the DCC would be double that we give for
RC in the second column, the standard deviations of the DCC

would be two times the figures in column four, and hence also

the 95% probability levels double those listed in the fifth
column above. )



The Covering Circle is particularly useful for rifle fir-
ings at . relatively short ranges or matches when the indi-
vidual impacts are not discernible on the target, but rather
the result of the firing is a big hole with all of the shots
having gone through it. It should be mentioned in this con-
nection that the diagonal (see below) also could be used and
is apparently more efficient in estimating o.

Example 16. Use the radius of the Covering Circle to deter-
mine an unbiased estimate of o.

Answer: For the group of 10 shots on Figure 1, it turnms
out that the diameter of the covering circle is equal to
the extreme spread, so that the radius of the covering
circle is thus 8.06/2 = 4.03. (For all farings it cannhot
be expected that the extreme spread will equal the diame-
ter of the covering circle.) Anyway, using Table 7 for a
sample size of n = 10, we get

o = ,5184(4.03) = 2.09,
as compared to the value 2.19 estimated with the RSD.
Example 17. 1Is the radius of the covering circle much more

efficient in estimating o than the extreme spread for as few
as n = 10 rounds?

Answer: The 'precision" of the extreme spread turns out
to be .745/3.813 = ,195, and that likewise of the radius
of the covering circle is .3680/1.928 = .191. Therefore,
the efficiency of the extreme spread relative to that of
the covering circle radius is

(.191/.195)2 = .96 or 96%.
Thus, the extreme spread is almost as efficient for n =10

11. THE DIAGONAL (D)

The rectangle, with sides parallel to the x and y axes,
which is determined by the extreme horizontal dispersion or
variation (EHD) and the extreme vertical dispersion or range
(EVD), and includes all the shots or impacts on the boundary
or within such a rectangle, is also used to estimate the dis-
persion of the shots on the target. 1In fact, we may use the
diagonal D of this rectangle as a measure of bivariate scat-
ter just as we do the RSD, the ES, etc. The diagonal, D, is
is simply the square root of the sum of squares of the range
values, EHD and EVD, in the two directions., Thus, we have

D = /(EED)? + (EVD)Z (10)
and from the figure, we see that numerically

TABLE 8. TABLE OF MEAN VALUES, STANDARD DEVIATIONS AND THE
APPROXIMATE 95% PROBABILITY LEVELS OF THE DIAGONAL (D)

Sample Mean Value Reciprocal of Standard 95% Prob

Size of D Mean Value Deviation Level of D
n E(D/0) 1/[E(D/0) ] sD(D/q) D, g5(D/0)
2 1.772 .5643 .9294 3.46
3 2.540 3937 .9254 4.16
4 3.035 3294 .9021 4.60
5 3.397 .2945 .8795 4.91
6 3.680 «2717 .8616 5.15
7 3.911 .2557 .8483 5.35
8 4.107 .2435 .8306 5.52
9 4.276 .2339 .8143 5.66 .

10 4,423 .2261 .8061 5.79

11 4.555 .2196 .7912 5.90

12 4.672 .2140 .7871 6.00

13 4.779 .2092 .7784 6.09

14 4.877 .2050 .7690 6.17

15 4.967 .2013 .7614 6.25

16 5.050 .1980 .7564 6.32

17 5.128 .1950 .7461 6.39

18 5.200 .1923 .7424 6.45

19 5.268 .1898 .7356 6.51

20 5.332 .1875 .7297 6.56

(Tabular entries in the second, fourth and fifth columns are
to be multiplied by the population ¢ or an estimate of that
o. The values given in Table 8 were determined by using the
Chi approximation of Patnaik [12], which is described in the
Appendix. Since the diagonal D consists of components under
the radical involving the ranges in both the x and y direc~
tions, then the problems of approximating the true distribu-
tion of the diagonal are very similar to those of the range.
The 95% probability levels were also obtained by using this
same approximation of Patnaik [12]).

The use of the diagonal may be especially desirable, for
example, when the impact points are not clearly discernible.

Note:

There may be some patterns of shots on the target, which
result in the extreme spread ES, the diameter of the cover-
ing circle 2RC and the diagonal D all being equal.



i D= /7Y% + (6)% = /85 = 9.23 . s

Table 8 gives the expected or mean values and the stan-
dard deviations of the diagonal, D, for n = 2 to 20 shots or
rounds, along with approximate 95% probability levels, -all
of which were obtained or calculated from theory we have in
our Appendix. ' )

Example 18. Estimate the CEP by using the Diagonal D.

Answer: The CEP = 1.1774 times the estimate of o, or
1.1774(9.22/4.423) = 2.45

as compared to the value of 2.58 in Example 10 for which
we used the mqst efficient estimator, the RSD.

Example 19. Which is the mofe efficient estimate of ¢ for a

sample of 10 rounds, the diagonal D, the extreme spread ES,
or the radius of the covering circle RC?

Answer: The precision of the diagonal D is calculated as
+8061/4.423 = .182, which is less than the value of 0,191
for the RC from Example 17 and the value of 0.195 for the
ES. Therefore, the diagonal D is a more efficient esti-
mator of o than either the radius of the covering circle
or the extreme spread. Make frequent use of the diagonall

12. THE RELATIVE PRECISION OF THE VARIOUS UNBIASED
ESTIMATORS OF POPULATION STANDARD DEVIATION

. As a basis for comparison, we summarize in tabular detail
in our Table 9 the relative precisions of the various single
direction or univariate measures: of dispersion, and the bi-~
variate or two-directional measures, we have studied in our
account herein. Recalling from Example 9 that the most use-
ful or appropriate method of comparison of the different es-
timates involves first dividing each estimate by its mean or
expected value, then our definition of precision consists of
simply determining the standard deviation of an unbiased es-~
timate of the unknown population sigma. Hence, precision as
defined herein is actually the coefficlent of variation mul-~
tiplied by the population ¢. In this connection, we prefer
to deal with the standard deviation - the first power or the
linear measure or value - rather than the second power or
the variance, or the reciprocal of the variance, etc., as a
measure of imprecision. Thus, in order to determine the im-
precision for each of the measures of dispersion or pattern
closeness, and for each different sample size, one takes the
standard deviation for each sample size and divides that by
the corresponding mean value tabulated. The following Table
9 gives the final values of imprecision and they may be used
as a basis for comparison or also to calculate the efficien-
cy (by simply squaring the tabulated value) of the measures

TABLE 9. THE RELATIVE PRECISIONS OF THE VARIOUS MEASURES OF
PATTERN DISPERSION ON THE TARGET  * ‘

Sem-- s, EHD, MEHD RSD MR ES RC D FOM
gi:e or EVD: or
n sy or R MVD

.755 .755 .755 .523 .523 .523 .523 .524 .534
.523 .525 . 525 .363 ..365 .362 .368 ,364 .371
.422 .427 .430 . .294 .208 .307 .303 .,297 .302
.363 .372 .373 .254 .26 .270 .266 ,259 .263

2
3
4
5
6 .323 .335 .334 .226 .232 .246 .242 ,234 .237
7 .204 .308 . 306 . 206 .212 .227 .224 .217 .218
8 .272 .288 . 283 .191 .197 .215 .210 .202 .204
9 .254,. .272 .265 .178 .184 ,203 .200 .180 .192
10 .239 .260 .250 .168 174 ,195 .191 .182 .184

11 .226 .248 .238 .159 .165 .189 .183 ,174 .178
12 .216 .239 . 227 .15 .157 ,183 .177 .168 .169
13 .207 .231 .217 .145 .150 .,177 .,171 .163 .163
14 .18 .224 . 209 .139 .145 .,171 .166 .158 ,158
15 .191 .218 .201 .134 - ~.139 .166 .162 ,153 .154

16 .184 ,212: 184 <130 .134 .,162 .158 .150 *.150
17 .178 .207 ° .188 .125 .130 .159 .155 ,145 .146

18 173  .203 .183 .122 .127 .156 ,152 - ,143 .144
19 .168 .199 177 .118 .123 .153 .148 ,140 ,141
20 .163 .195 .173 L1158 .120 .150 .147 137 f138

of dispersion of interest and dividing such results into the
corresponding square-of the RSD values.. Thus, for n = 8, we

get the efficiency of the FOM = (.191/.204)2 = 88%.

From an examination of Table 9, we notice that the biva~-
riate measures of dispersion (5th - 10th columns) are consid-
erably more precise than the univariate or one - directional
estimators (2nd - 4th columns) as might well be expected, of
course. For the univariate measures, the standard deviation
of sample values is the most precise or efficient. estimator
of o, while for the bivariate measures of scatter the radial
standard deviation is uniformly best. It is observed in ad-
dition that the mean radius stands next in precision to that
of the RSD, and the extreme spread, which is the simplest to
determine from the pattern of shots, is the most inefficient
of all theé various bivariate estimators studied. The diago-
nal is somewhat better than the radius of the covering cir-
cle in precision and efficiency. The FOM or figure of merit
is surprisingly precise for the sample sizes considered.

Many comparisons may be made with the imprecision values
listed in Table 9. As an example, the RSD for a sample size

* The precision of an average measure based on m subgroups of n each is
found from Table 9 by dividing the appropriate ‘entry by /m .



of 8 is just as precise as the RC for a sample of 10 rounds,
and the mean radius for 11 rounds is about as precise as the
extreme spread for 15 rounds (.165 vs .166).

As previously indicated, one may calculate the relative
efficiency of any estimate by taking the appropriate Table 9
entry, dividing it into the corresponding tabular value for
the RSD, and squaring the result. Also, however, the rela-
tive efficiency of one measure of pattern tightness in con-
trast to that of another one may be easily found. Such may
be determined by dividing the smaller of any two correspond-
ing values by the larger one and squaring the result. Thus,
the efficiency of the extreme spread relative to that of the

mean radius for a sample of 16 rounds is (.134/.162)2 = 69%.

If the values in the second column of Table 9 are divided
by V2, then the result is the standard deviation of a slight-
ly biased estimate of ¢ based on the average of Sy and sy.

In this connection, it will be found that the unblased esti-
mate based on the RSD is slightly more precise as in column
5. Also, the RSD is somewhat more precise than the estimate

of ¢ computed from the square root of the average of s: and
2

sy as in Example 1 because of the divisor.

Moranda [10] and Scheuer [15] have studied the efficiency
of various estimators of the CEP for the case where one may
assume that the true C of I is known, i. e. that the Xy and

y; are deviations which are normally and independently dis-

tributed with Zero mean and unknown variance 02 (or standard
deviation ). In our treatment here we assume that both the
mean and the variance of the bivariate population are unknown
as this generally is the case in practice. (Concerning esti-
mation, some readers will be interested in Example 22 at the
end of the following Section 13.)

13. SIGNIFICANCE OF THE OBSERVED CENTER OF IMPACT

It is our purpose here to determine whether the observed
center of impact (C of I) differs significantly from the aim
point or whether the sight on the rifle is set properly. Re-
ferring to Figure 1, suppose that the aim point was the ori-
gin, 1. e. the point (0, 0). We know that the observed C of
I for the ten rounds fired turns out to be the point X = 1,
y =1or (1, 1). In order to judge whether there exists any
statistical evidence to indicate that the true C of I or aim
point is actually at the origin (0, 0) or not, we first make
sthe assumption that the x and y directions are really inde-
pendent or uncorrelated and the standard deviations in the x
and y directions are equal, i. e. Ox = °y = ¢g. In this case

"

then we use the statistical test based on
n(x - a)2 + n(F - 8)2

TR . & ' o
with ” X y y
o2 - I(xy - %) 2 o I(yy - ¥) s = I(xy - x)(yy = Y)
b S n -1 * Py T T n=-1 Xy n - 1
A A A *

“EEeD " EE T oy

which follows the Snedecor F-distribution with 2 degrees of
freedom for the pumerator and 2n - 2 degrees of freedom for
the denominator. o and B are the hypothesized x and y values
for the location of the true C of I. If the observed values
of F are significant, then we would reject the null hypothe-
sis that the C of I is located at the point (o, 8). Now for
an example, as this is a study of accuracy of fire.

Example 20. Using the data of the figure, then determine if

it can be said that the true unknown C of I is at (0, 0), or
that is at the origin.

Answer: We have the pertinent numerical data,

2

n=101§=1,§=1: SX

2-- =
= 5,33, Sy = 4, and Sxy 0.889.

In order to demonstrate the proper use of (11), we should
show first that the standard deviations in the x and y di-
rections are equal. This is done by calculating

_ al,)al _ =
F = Sx/sy = 5.33/4 1.33,

which is not significant for 9 and 9 degrees of freedom.

To test the hypothesis that « = 8 = 0, or i. e. that the
true unknown C of I is at the origin, we calculate

2 2
_ 1001 - 0% + 100 - )2 _
F = 5.53 + 4.00 2.14,

which for 2 and 18 degrees of freedom is not significant,
even at the 90% probability level of F, Hence, we are in
the position of concluding that true aim point could well
be considered to be at the origin (0, 0).

The reader will note that we did not use the calculated
value Sxy = ,889 in this particular example. This is due to

the fact that the sigmas in the two directions were found to

* See Formula (12) on next page.



be equal and there doesn't seem to be any correlation at all
between the x and y values, as judged from an examination of
the Figure. However, the much more general case of unequal
sigmas and an inclined pattern of shots also in the two di-
rections would require instead of (11) the formula or sample
statistic

%-a) 1 [/A(F-8)] + S2[/n(7-8)1>

2 2 ’
Sy 7 Sxy (12)
which is known as Hotelling's T2. The quantity

T =

s SiU/A(x-a)1%- 25, IVA(
2
X

= (n - 2)T%/2(n - 1) (122)

follows the Snedecor F distribution with 2 and n - 2 degrees
of freedom.

For our Example 20, we find that F = 8(3.68)/2(9) = 1.64
and this value of F for 2 and 8. d. £f. is not significant, so
that the true C of I may still be taken as the origin (0, 0).

Finally, two other examples on the text:
Example 21. The radial standard deviation (RSD) for the ten
shots on the Figure turned out to be 2.90. Therefore, it is

seen that the radial variance is (2.90)2 = 8.41 and this es-
timate has 18 d. £. Suppose now that another rifleman fired
10 rounds at the target, obtaining an RSD of 4,50, Are the
two population standard deviations for the riflemen equal?

Answer: The radial variance for the second rifleman will
be found to be 20.3 and also has 18 d. £f. Moreover, the
ratio of variances is 2.41, and under the null hypothesis
of equal variances such a quantity would be distributed
as "F". But F.95(18, 18) = 2.22, and hence we would have

to conclude that the first rifleman exhibits the smaller
sigma (tighter pattern). (A similar test applies also to
the squares of the two Diagonals - see the Appendix.)

Example 22. 1In estimating ¢ by using the RSD and by formula

(9), would it ever pay not to use the X and y in the formula
(9) as estimates of the population means, but rather ignore
them by substituting zero values in their place?

Answer: Yes. Moranda [10] shows that for a small sample
size of about 8 or less, then the RSD based on (9) is not
as precise as the quantity

Z(xz + yz)/n
in estimating the CEP = 1.17740, since two degreesofihee—
dom are lost if X and y are used in (9).

14. APPENDIX ON RELATED STATISTICAL THEORY

A. The Sample Standard Deviation (s or Sy OT sy).

It is well known that the Chi-square probability distri-
bution is given by

XZ

_1 -
£(x2) dx? = cx2) e 2ay2 (13)

P(f)Z

for v degrees of freedom (d.f.). For s? = % z(xi-i)z, then

x2 = ns2/02 is distributed as Chi-square, and we have that

the kth moment of the sample standard deviation, s, for a
normal population will be given by

n-1

== nt+k-1
ky _ (n/c? « n+k-2 -ns?/202, _ 262 Zr( )
E(s™) = = I s e ds = (=) -
- 0 n r (@ 1)
2
(14)
For k = 1, we get the mean value of the standard error, s, or
2 172 r(z_)
E(s) = (3) —T.% = €, 9» say. (15)
ri)
[ The very complex <, is about equal to (n-1)/(n-.25)]
n+1)
For k = 2, E(s2) = (3) _E__T; o2 = BL g2, (16)
so that the variance of s is
= o2 = -1 _ 29,2
Var s og L 5 cn]c , (172)

and the standard deviation of s is



= n-1 _ 2 *
% " S O (17b)

Values of c = (%)”%‘(%)/r(%) and the quantity\} I%I - c2

for n = 2(1)20 are given in Table 1. They are based on the
Biometrika Tables for Statisticians [14].

B. The Sample Range (w, or Rx’ Ry’ or EHD, or EVD)

The probability distribution of the sample range, i. e.
the largest minus the least sample values (which is also the
extreme horizontal or extreme vertical dispersion) has been
investigated by Tippett [17], Dederick [2] and Hartley [7].

Letting w = X, - X3 = largest minus smallest sample values,

then the probability that w is 1less than W for normal
samples is

P_(W) =n [_£(x) [ji*wf(t)dtq“'ldx, (18)

-x2/2

where f(x) = e .

1
1’ 21T
The probability integral of the range, w, has been tabulated
by Pearson [13] for n = 2(1)20 and Dederick [2] for small
values of n.

Tippett [17] in 1925 gave values of the mean and stand-
ard deviation of the sample range which we label as

E(w) = d o (19)
and Oy = kno, (20)
where dn and kn depend, of course, on the sample size, n.
The values of dn and kn given in Table 2 were taken from the
Biometrika Tables [14].

* The quantity Ch = 1 - 3/4(n-1) + 17/32(n-1)2,
w or 1/e, = (n - .25)/(n - 1). Also, E(x) = /n(n-1)/(n-.25)
and T(n/2)/T[{n-1)/2} = /A(n-1)//Z(n-.25).

Patnaik [12] has made a study of the distribution

of the range by approximating it as w/o = cx//v , where c is
a scale factor depending on n and x is a Chi variate with v,
an equivalent (fractional) number of degrees of freedom for
Chi. Values of ¢ and v are given in our Table 11, page 42.

C. The Sample Mean Deviation (MD, MHD or MVD)

The probability distribution of the sample mean devi-
ation for any general sample size, n, was worked out ap-
parently first by Godwin [4] in 1945, although R. A. Fisher
in 1920 derived the mean value and the standard deviation of
the sample mean deviation for samples of size n from a
normal population. Godwin's distribution 1is a multiple
integral which was tabulated by numerical quadrature.

Using MD to denote the sample mean deviation, which is
also the mean horizontal deviation (MHD) or mean vertical
(MVD), then Fisher [3] showed that

E(MD) = /Z(n-1)/nr o » .7979 o , (21)
oMD " YTAZég%ll {% + /am-2) - n + sin ! H%T } o (22)

for random normal samples.
Values of the mean value (21) and the standard error
(22) of the sample mean deviation are available in the Bio-

metrika Tables [14]. These moment constants are given in
our Table 3.

D. The Radial Standard Deviation (RSD)

The radial standard deviation (RSD) given by

RSD = R = y Lrs(xy - 02+ 10y, - )23 (23)

has been investigated by Grubbs [5]. When oi = o§ = g2, we

note that n-R2/0? for normal samples is distributed as a x2
with 2(n-1) degrees of freedom. In this case, the ele-
mentary probability distribution of R is from (13)



Pn-l dR’ 0<R<w.

The first moment and the variance of the RSD are
r(n-%) o

1 1
0 = e yw o - YO o me * ey

¥ m'n-s(n—_ns}d, (25)

and Var R = Z{n-1 - (1023 q2,2, (26)

For n = 2(1)15, reference I[5] gives the mean, the

standard deviation and the .5%,5%, 95% and 99.5% probability

levels of R. Mean values and standard errors of the radial
standard deviation , as a multiple of ¢ (and not /2o as
in [5]1), are given in Table 4.

When o, # oy the quantity Rz/(ci + o%) has mean equal

to (n-1)/n and variance equal to 2(n-1) (1+a")/n2(1+22)2,
where ) = We may thus take the quantity xg =
n(1+A2)2R2/(1+A“)(0§+o§) as being distributed approximately

as Chi-square [6] with (n-1)(1+12)2/(1+2%) degrees of free-
dom. Therefore, probability statements about R or R? may be
made using x; as being distributed like Chi-square.

cx/cy.

Since the radial variance follows a Chi-square distri-
bution, then we may easily compare the dispersion patterns

of two riflemen or that on two targets by using the "E"
test.

E. The Mean Radius (MR)

The mean radius (MR) is defined as the mean of the
radial distances from the observed center of impact (C of 1I)
to the individual points of impact on the target, The ob-
served C of I is (x, y), and an individual impact point is
(xi, yi), thus the (bivariate) sample mean radius is

n -
MR =2 5y (x; - )2+ (y; - P2 (27)

i=1

We observe that n(xi-i)z/(n—l)o2 and also n(yi-)")zl(n-l)c2

are each distributed as Chi-square with one degree of free-
dom. Hence, the quantity

. _/n
1 /mTo

degrees of freedom, and we thus have
MR=$%£-

Therefore, the mean value of the MR is

3
— T(f)
R PO R s Ty o nass o

1

{ (x;-X)2 + (y;-§)2 is a Chi-variable with 2

Xj (2). (28)

Sla
H-
nes s
—

n-1
n

E(MR) =

(29)

Values of the multiplier of ¢ are given in Table 5 for
n = 2(1)20.

In order to find the variance and hence thg standard
deviation of the mean radius, MR, we use the relation

Var MR = E(MR)2- [E(MR) 12, (30)
Now
1 2 - oy21 2
BOR)? < B{g - T NG K2+ (y;-7)2) (31)
v IR LCIE LR ARl

+ zigjﬂ(xi-i)ﬁ(yi-?)‘lt(xj->=c)‘+(yj-?)‘l}



= - ER e wGEhe - e eieh) wied),

n2
where u; = (xi-i)/V(n-li7n c and v, = (yi-i)//in-1i7n o,

so that uy and v; are normally distributed with zero mean
and unit variance. Note, however, that uy and u. (and v,
and Vj) are correlated, and that E(ui uj) =p = - 1

In order to find E‘V (u2 + v2)(u2 + V2), we evaluate the
quadruple integral

17 Y eivhien
e 472 (1-p2)

1 2
———{us-2pu.u.+u+v2-25v.v.+v?2
2(1-92){ i-Zeujusrul+ve pvle+vJ}

. duidujdvidvj - (32)

Let u;= r cos @, vy = r sin e, uj = s cos ¢ and vj = s sin ¢,

then the integral becomes

- 7TT%ETT {r2-2prs cos(6-¢)+s2}
fff fr"ze

4o 2(1 -p2
+ dr ds de d¢
-*rz
o oV ® a2 2(1-p2) )
- \Y]
"k T e art {[77] cos®(e-4)
v 4n2 (1 02) vt 0 0

- de d¢} .

o

Carrying out the indicated integration, we obtain finally

2 2 2 2y =
EJ (ui +vi)(uj + vj)

- if v is odd

o0
E T
v=0 V.

((“ 1)(;:7) . e (%)% if v is even

(33)

This enables us to find that the variance of the MR is

var uR = 2B {1+ B2 By 3 0 vDY(uF 4 VD) - B} o

(34)

Values of the standard deviation of the mean radius
were determined with this formula and are given in Table 5.

F. The Extreme Spread or Bivariate Range

The Extreme Spread or Bivariate Range is the maximum of
the distances between the (g) pairs of points or impacts on
the target plane. Denoting a general point by (xi, yi) s
i=1,2,3, ..., n, then the extreme spread is the maximum of
the distances

J(xi - Xj)z + (Yl - Yj)z s i3y i, j=1,2,3,4, ..., n.

For n = 2, we note that the extreme spread is given by



TABLE 10
MOMENT CONSTANTS FOR THE BIVARIATE RANGE OR
EXTREME SPREAD
(FROM REFERENCE [161)

ES o7 = /(X1 - %x2)2 4+ (y1 - y2)2 = V7 xo,a random Chi vari-

ate, where Chi has two degrees of freedom. Now in this case,

E(ES) = 1,77245 ¢ and Opg = -9265 0.

For any general sample size, n, the exact distribution

of the extreme spread, ES, has apparently not been worked
out analytically.

Mean values,standard deviations,and the third and fourth

igi Mean Standard
moments of the extreme spread were computed originally un- Sample s
der the direction of the late Samuel S. Wilks of Princeton Size u! Devzatlon 3 x4
University as a result of discussions between the author and n 1
Prof. Wilks concerning the Tracking Data Analysis study of 2 1.772 0.932 0.632 3.294
Reference [11]. In connection with this study, the first
four moments of the trivariate range, the trivariate mid- 3 2.406 0.887 0.451 3.143
range, the bivariate range, and Fhe bivariate midrange were A 2.787 0.856 0.393 3.163
computed by a Monte Carlo sampling procedure on an IBM 7090 :
Computer.  The Fortran Language was used by Prof. Wilks and 5 3.066 0.828 0.390 3.171
Mr. Paul Raynault of Princeton University, the latter person
assisting in the computations. More recently, Taylor and 6 3.277 0.806 0.374 3.194
Grubbs [16] performed very extensive Monte Carlo compu- 7 3.443 0.783 0.373 3.177
tations to get moments and percentage points of the extreme
spread more accurately. Their moment constants are given 8 3.582 0.771 0.392 3.231
in Table 10. The values 1listed in the table should not, of 9 3.710 0.754 0.382 3.215
course, be treated as exact ones, since due to sampling
error the third decimal places may be slightly in error for 10 3.813 0.745 0.388 3.288
sample sizes greater than n=2, The skewness and kurtosis .395 3,255
moment constants, a3 and ay, are given by 15 4,190 0.694 0.39
3/2 2 20 4.452 0.668 0.400 3.240
a3 = VBy = ug/uy and ay = 8y = uy/uy .
25 4.639 0.650 0.439 3.307
In connection with approximations to the probability 28 4,734 0.642 0.426 3.357
distribution of the extreme spread, Taylor and Grubbs [16]
have found that the approximate Chi-square technique [6] 30 4,788 0.635 0.463 3.441
gives a good fit for the Monte Carlo percentage points ob-
tained. 31 4.822 0.631 0.434 3.321

34 4.891 0.623 0.422 3.318




G. The Radius of the Covering Circle (RC)

The Covering Circle is defined as the smallest circle on
the target containing on it or within it all of the sample
points or bullet impacts. The distribution of the radius,
RC = r, of the covering circle, and the distribution of its
center p has been studied by Daniels [1]. Daniels shows
that the probability density function of the radius r for
normal samples 1is

& F (r) = nln-1)e T /%o T /20502y sz (35)

and the cumulative distribution function of r is

Fn(r)=n(1-e‘r2/2°2)n‘1 - (n-1)(1-e’r2/2“2)“. (36)

Daniels points out that the cumulative distribution of
r may be related to and computed from Karl Pearson's Incom-
plete Beta Function as

-2 2
N IZ(Z, n-1) with z = ¢ r¢/20 .

Also,
r = {2 1n [(n-1)/2F + 11}7%, (37)

where F has Fisher's variance ratio distribution with 4 and
2(n-1) degrees of freedom.

Values of the mean and standard deviation of r/¢ or
RC/c in our Table 7 were obtained from Table 1 of Daniel's
paper [11.

H. The Diagonal (D)

The diagonal, D, is simply the square 7root of the sum
of squares of the extreme horizontal dispersion, EHD, and
the extreme vertical dispersion, EVD. Thus, we have

D = /(EHD)? + (EVD)? = /RZ + RZ (38)

where Rx and Ry are the independent ranges or maximum dis-

persions for mnormal samples in the x and y directions, re-
spectively. Following Patnaik [12], we will approximate the
range by a Chi variable, i. e.

Ry

[¢)

o~

R
x. and 7% s £y (39)

x Y

<
Vv

where ¢ is a scale factor depending on the number of points,
n, and v is an equivalent fractional number of degrees
of freedom for Chi.

Let us define the mean and variance of the univariate
range (R) by

- = 12 42
E(R) = dna s Var R kn o . (40)
Then, of course
2y = 2 2y 42
E(R%) = (42 + kZ)o?. (41)
Further, due to the approximation, R/c = ¢ xv//v, then
(4] v+l v
E(R/¢) =——+ E(x,) = & V2 r(=53)/T(3). (42)
2 2
and E(R2/02) = & « E(x2) = € . v=2c2. (43)
v v

Therefore, for a formula for the scale factor c, we have

c? = df + k. (43a)
Using the Chi approximation for both R, and Ry’ we find
the mean value of the Diagonal D:

E(D) = E /R§ + R% =« B /szé /v + c2x§/v o
= C « EV¥2Z + %2 = £ .
= F\, o « EVxZ + x§ = o E(x2v) (44)

c/2 T(v+i)o/Yv T(v)



= V2 co{l - 1/8v + 1/128v2 + 5/1024v3}

from which we may find the mean values of the diagonal

D.
Note that c and v both depend on the number n of pgints or
1mpa$ts; ¢ is found from (43a) and v by formula (5) of Pat-
naik's paper [12]. Our dn = Patnaik's M.

The variance of D is Var D = E(D2) - [E(D)12, or

Var D

z—ﬁz—{v-tr(w)/rcv)m o2

2c2 T(v+
{2 c2- 28 [Iv*a)g2y52 (45)
Mean values of the diagonal using (44) and standard

deviations of the diagonal from formula (45) are gi i
given in
our Table 8. Values of n, c¢ and v are given in Table 11.

TABLE 11

Table of Values of n, ¢ and v for the Diagonal
(Values of dn and kn are given in Table 2)

n c v
2 1.41421 1.0000
3 1.91154 1.9846
4 2.23887 2.9291
5 2.48125 3.8267
6 2.67253 4.6772
7 2.82980 5.4841
8 2.96288 6.2512
9 3.07793 6.9818
10 3.17905 7.6799
11 3.26910 8.3482
12 3.35016 8.9893
13 3.42379 9.6055
14 3.49117 10.1991
15 3.55323 10.7717
16 3.61072 11.3251
17 3.66422 11.8606
. 18 3.71424 12,3795
19 3.76118 12.8829
20 3.80537 13.3719

Since vD?/c20%2 is approximately distributed as Chi-
square with 2v d.f., then the "F" test may be used for com-
paring the dispersion patterns on two targets. For the same
number of shots on each target we merely find the ratio of
the square of the two diagonals and look up F for 2v and 2v
d.f. For unequal numbers of shots on the two targets we
compute

D2 D2

F = —% —% with 2v; and 2v, d.f.
c c
1 2

I. Probability of Hitting a Circular Target

So far we have discussed the various measures of pre-
cision and their statistical characteristics. To make our
treatment more complete, we should also discuss probability
of hitting, at least in an elementary way. Assuming that x
and y are independently and normally distributed with means
(or aim point) o and B8, and round-to-round variances ci and

o§ » Trespectively , then the density function of x and y is
given by

- - 2
£ V) < gige o | %‘;%LZ%';}%L} L6

The chance that a round falls within a distance R of the C
of T at («,B), is then
Pr = fRf f(x, y) dx dy 47
which is to be taken over the region R defined by
(x-a)2 + (y-8)2 < R? (48)
Case I: oi = 0; = g2(Circular Case)
For this case, we make the polar transformation

X - a =T Cos 6 y - 8 =1 sin 8 (49)

and we find easily



Pr{(x-a)2 + (y-8)2 < R?2} = Pr(r2 < R2) = Pr(r < R)

2
=1 - e R¥/2e%2 _ ; _ (1/2)(R/CERYT  * (50)

If we set this probability equal to .5, then we find
the radius of the «circle which gives by definition the
Circular Probable Error (CEP), i. e. solving

-n2 2
P=.5=1-eR/20% $5r R = R(.50), we get
R(.50) = CEP = 1.1774c . (51)

Otherwise, the probability of hitting within any
circle of radius R about the true C of I = (o, B) is given
by Formula (50).

Case II: Oy # °y {Non-Circular Case)

Let us assume in all generality that we not only have
Oy # Oy but also that we wish to find the chance of hitting

within a circle of radius R about a point (a, b) which is
offset from the C of I or point of aim (a«, B). For this
general case, Grubbs [6] gives a method which approximates
the true probability with sufficient accuracy for most
practical cases. The technique requires that we set

°§=c)2c+°§” (52)
m=1+ Q%E(a-a)z + (8-b)271 , (53)
c,‘O
0% + 0% o2(a-a)2+ a2(8-b)?
v=2{X Y. r X Y 1}, (54)
ot Og
Q

and compute the quantity

s Y e S (Gt . o A S Y e i G G (e oy (U e S St e B Gy S S e S G A, A D e S . W Yo W S o W

¥ As an illustration, and using the data of Example 1, it is
easily verified that a rifleman firing at a 12" bull's eye

,located at a range of 100 yards will have a probability of
hitting equal to

2
1 - o—(6/2.22)%/2 _ ( 49

3
tp = { v RZ/o2m - (1 - v/9m?)} J v/9m? | (55)

which is to be referred to a table of the standaydized Nor-
mal (cumulative) distribution or integral to find the de-
sired probability.

In connection with formulae (52)-(55), it is outlined
in Reference [6] for

E(x) = a, E(y) = 8, E(x-a)2 = o2, E(y-8)2 = o§ (56)
o2 y2 = (x-a)? + (y-b)? (57)
and
E(@2) = m as in (53), (58)
E(y2 - m)2 = Var y2 = v as in (54), (59)

then the quadratic form

amy2/v = x2 (2m2/v) (60)

. . - 2
is approximately distributed as x2 (Ch}-squarg) with 2m#4/v
degrgzs of freegom. Then applying the Wilson-Hilferty trans-
formation converting x2 to approximately normality, we have

Pr{(x-a)2 + (y-b)2 < R?}

3
= Prit = I J x%/n1-(1-2/9n) 1/¢ 2/9n;1 < tR} , (61)
where n; = 2m2?/v degrees of freedom (a.£.) .

With the above theory, it is easy to find the approxi-

mate CEP when Oy # cy. We have only to equate (55) to zero

and solve for R. We get ‘
3/2
CEP = R = g /m(1l-v/9m2) . (62)
.50 o
When o, = o =0 /Y2 [i.e. the g, of Formula (52)1, then

= the well-
CEP = R.SO = (32/27)0x = 1.1850x as compared to
known relation CEP = v¢21n2 Oy = 1'1774°x'

(The Spherical Probable Error is SPE = 1.538c.)
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NOTES & COMMENTS

Note on Upper Confidence Bound for the true, unknown CEP:

As is sometimes desired, one may calculate a

' n upper con-
fldence on the true, unknown CEP for the general cgge given
in Formula (6?) by noting that the true CEP is really a sca-
ling factor times the Oqt Hence, the observed

S2 = 52 + 82

b4 Yy
h 2 2 . 4 4
as a mean of Oy + oy and variance of 2(0x + oy)/(n—l), so

(63)

that the number of degrees of freedom for Chi~-square is
_ 2 2 2 4
v = 2 = — 4
m°/v = (n~1) (1 + 20} oy/{oX + oy}): (64)

and the upper 100(l~a)% confidence bound on the true CEP is

(Observed CEP)Vv/xé(v) ’ (65)

2 .
where Xg 1S the lower o probability level of the well-known

probability distribution of Chi-square (The reader sh
note for equal varia i h S es
not proper%y z(n_l;.nfes in x and y, the degrees of freedom
The above gives an approximate confidence bound for the
true, unknown CEP. The CEP of (62) depen@s very much on the
m of (53) and its square root, for the 9m dominates v very
greatly as the offset increases. For large offset, the par-
entheses to the 3/2 power in (62) approaches unity, so that
the CEP becomes oo/ﬁ, and the rate of convergence is fast.

This more or less ind%cates the importance of the mean value
m. Of course, one might perhaps work out a more exact bound

for the CEP, so that we leave this a i
3 s an exercies for -
ergetic graduate student! e

In a footnote on page 10 we raised the questio "

not rlflemen use the CEP?" In fact, thereqstill zéiszgymggh
confusion on the subject of rifle accuracy since the various
measures of scatter depend so much on the number of shots in
a group of rounds, and the underlying sigma unfortunately is
a hidden parameter. Thus, better standardization is called
for. As a suggestion, we put forward the idea that for cir-
cglar patterns of shots - for which the sigmas may be con-
sidered to be equal in both directions - standardization may
be effected by always quoting the unbiased CEP,

: CEP = 1.1774 6 , (66)

where the quantity G is always the unbias i

: ) ed estimate of the
underlying pgpglatlon parameter o based on hopefully one of
the more efficient measures of dispersion herein, which ac-
counts for scatter in both directions. At least, one could

NOTES & COMMENTS

make it a point to simply use the unbiased estimate of sig-
ma which has the effect of eliminating sample size confusion.

We note that it is fairly easy to remember that for very
large samples (#rounds) the standard deviations approach the
true population sigma without bias, that the mean deviations
approach .7979 sigma and the mean radius approaches 1.2530.
And obviously, the radial standard deviation approaches /2 0.
However, the other measures depend very markedly on the sam~
ple size, and one must quote the number of rounds to let the
reader correct for bias, or otherwise give the unbiased es-
timate of sigma. Always think in terms of the hidden sigmal

Note on Wild Shots:

What about "flyers" or wild rounds, which occur perhaps a
bit too often? Such rounds will inflate the amount of scat-
ter in the pattern and the analyst will sometimes want to be
able to detect them, but more important will desire to find
the physical cause and correct it, if at all possible. For=-
tunately, there are statistical tests for detecting whether
some of the observations in a sample, Or therefore in a giv-
en group of shots, can be considered to be aberrant, and in-
deed suspect. This area of statistics may be found in many
textbooks and concerns procedures for the detection of out-
liers. Alternatively, the reader might see a United States
Army Engineering Design Handbook, dated December 1983, which
has the title, "Selected Topics in Experimental Statistics ,
With Army Applications". It is available from the National
Technical Information Service, Department of Commerce, loca-
ted at Springfield, virginia 22161, and identified as DARCOM
Pamphlet 706-103.

Accuracyi

As we have observed throughout our coverage of bullet im-
pacts the term accuracy is not very easy to fully understand
or define and there is a lot of confusion on the subject too.
Nevertheless, we should perhaps attempt to try and add a bit
more illumination finally. The underlying sigma is a meas-
ure of the "internal" scatter or imprecison of the impacts
about their C of I. But, the C of I may be offset from the
aimpoint, resulting in a bias causing inaccuracy therefore.
Hence, a complete description of accuracy must account also
for such bias or offset, especially since it is not very easy
to place the C of I of shots on the aim point or "zero in".
Nevertheless, scatter or imprecision of shots and the offset
or bias can both be taken care of, for example, by the use of
the general CEP of formula (62), involving scatter apd of£-
set. In fact, and generally speaking, a small CEP in (62)
means high probability of hitting, and that is a very impor-
tant measure of system accuracy itself! The rifleman should
therefore study this whole matter very carefully. Indeed, an
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attempt should always be made to keep these components firm-
ly in mind, including their relative sizes, when one thinks
of the problem of accuracy. Detection of the size or amount
of bias depends markedly on the underlying sigma and the num-
ber of rounds fired or sample size. Thus, for the problem
of accuracy, one needs to estimate the sizes of the compo -

nents of offset along with the round-to-round sigmas, then

substitute these values in formulas (52) - (54), and compute
the CEP of (62). This is indeed a very good measure of ac-
curacy even though the sigmas of x and y are unequal and the
problem of offset also exists. Hence, we would advise that
riflemen might well put some thought into this suggestion! A

better understanding of overall accuracy would then probably
result.

Finally, do not forget that all of the measures described
herein can be calculated when the inpacts of the individual
shots are not discernible, 1In the case of a big hole or a
glob of shots, one may have to use the extreme spread or a-
nother measure like the diagonal or covering circle, and in
such cases the diagonal may be a little better. However, for
a small number of shots, such as five per group, the differ-
ences in efficiency are not very great.
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