














tal direction. 1In an analogous manner to the description w
have given for the variation of an individual x we could ex
press the variation of the standard deviation, Sy from sam-

ple to sample by means of the standard deviation itself of a-
large number of such values for a fixed sample size. On the
average, s_, for fixed small sample sizes n does not exactly’

equal the population standard deviation Oge That is to say,'
for small samples Sy is a biased estimate of the population
cx. The bias is due to the fact that the computation of each
Sy involves deviations about the sample mean, not the popu-
lation mean, so that on the average Sy is somewhat less than
O The amount of bias depends on the sample size n, but ap-
proaches zero for large samples of size n,

It is known from statistical theory that the sample vari-
ance computed as -

s2 =282, (e

2 _ 1 =t -.2
S n-1 “x

— I (xi\- x)

= = A__/n(n-1)
X n-1 .4 XX '

which is based on n-1 "degrees of freedom" (d.f.) - (one de-
gree of freedom being used in the calculation of the sample

mean X as an estimate of the population mean) - is on the
average equal to the population variance oi , whereas the

sample variance computed from si = E(xi - i)z/n, and based
on the entire sample size n is on the average equal to the
quantity (n-1) oi/n, and is thus biased by —oi/n. (It might
seem curious to the reader, but it is true that Sx’ based on

the square root of formula (6), is not an unbiased estimate
of Oy for small sample sizes!)* One of our main interests in

this book is that of examining and expressing the measures
of dispersion in terms of the population standard deviation
Oy For a Normal or Gaussian distribution of shots on the

target, the mean value of Sy and the standard error of Sy

may be calculated as a multiple of the population (or large
sample) value of 0, as indicated in the APPENDIX ON RELATED

STATISTICAL THEORY. The mean values and standard deviations
of the sample standard deviation depend on the sample size
n and are given in Table 1. The 95% probability levels of |
s are also given. In Table 1 we drop the subscript x from |

*For nearly unbiased estimates of o, multiply the estimate va

by (n-.75)/(n-1), or s, by (n-.25)/(n-1).

s and o since the theory covers generally the relationship
between the sample and population standard deviations. Also,
for most rifle firings we can assume that ox = ay = g, say.*

Note in Table 1 that the mean values of s (or sx) do ap-
proach the true o (or cx) and hence become unbiased for very

large sgmple sizes. Also, the standard deviations of s _de~-
crease in value, becoming more precise for the very largest
sample sizes, as would be expected. o is an "unknown" value.

For rifle firing, as already mentioned, the population
standard errors, Oy and cy, for the horizontal and vertical
dirgctions, are about equal, with the result that we may use
a single value, o, to represent either of o, or Uy.

The pgpulation standard deviation, o, then is the true
or population standard error of an individual shot or bullet

in either the horizontal or the vertical direction. The
standard deviation of the mean or average of n shots for

e?ther the x's or the y's is 0//n and the standard error of
either of the sample standard deviations, s or s_, for

n rounds is approximately equal to 0/v2n. Exact values of
the standard deviations of Sy and s_ (i.e. s, generally) are

given in the fourth column of Table 1. Thus, for the ten
shots indicated on the target, the standard deviation of
either component of the C of I (%=1 or y=1) is 0/Y10 and the

standard deviation of S, or sy is about o/v20.

Example 1. Using the data for the firing represented in
Figure 1, find the estimates of Oyr cy, and o,

Answer: Since n = 10, using Table 1, we find

Estimate of Oy = S,/.9227 = 2.19/.9227 = 2.37
= 2.19 x 1.084 also.
Estimate of o = s,/.9227 = 2.06 = 1.90 x 1.084 also.

To find the estimate of o, assuming Oy and oy are about

equal, we could take the average of 2.37 and 2.06, or better
still, since the variances are additive, use

1/2

[.5(s2 + si)] /.9227 = VE.3/.9227 = 2.22.

Example 2. Find the standard error of the components of the
C of I. Find also the standard deviation of either of the

* The case Oy # oy is discussed briefly in the APPENDIX.



TABLE 1
TABLE OF MEANS OR EXPECTED VALUES AND STANDARD DEVIATIONS OF

s = /z(xi-i)z/n FOR A NORMAL POPULATION

Reciprocal of

Sample Mean Value Mean Value Standard 95% Prob
Size of s Coefficient Deviation Level of s
of s
n E(s/o) * 1/E(s/0) SD(s/c) ** 8 g5/0
2 . 5642 1.772 . .4263 1.39
3 .7236 1.382 .3782 1.41
4 L7979 1.253 . 3367 1.40
5 . 8407 1.189 .3052 1.38
6 . 8686 1.151 .2808 1.36
7 . 8882 1.126 .2612 1.34
8 . 9027 1.108 . 2452 1.33
9 . 9139 1.094 .2318 1.31
10 .9227 1.084 .2203 1.30
11 . 9300 1.075 .2104 1.29
12 . 9359 1.068 .2017 1.28
13 . 9410 1.063 .1940 1.27
14 . 9453 1.058 .1871 1.26
15 . 9490 1.054 . 1809 1.26
16 .9523 1.050 .1753 1.25
17 . 9551 1.047 .1701 1.24
18 9576 1.044 1654 1.24
19 9599 1.042 1611 1.23
20 9619 1.040 1570 1.23

Note: * E(s/0) = Expected value of. ** gD = Stand. Dev.

The mean values and the standard deviations in this table
and the following tables are in terms of a population stan-
dard deviation of unity. Hence, all tabular entries in the
second and forth columns are to be multiplied by the popu-
lation standard deviation ¢ or an estimate of it. For the
third column, if we let the expected value of s be E(s) =
co, say, then the reciprocal of the mean value coeff%cignt
is 1/c, and the entry in the third column when multiplied
by s results in an unbiased estimate of o. [c = E(s/0)]

Standard deviations of sample statistics or variables given
in this and the following tables are calculated about their
. own expected values, and hence not about unbiased estimates
of the parameter unless so indicated.

The fifth column gives the 95% probability level or tpe up-
per 5% point of the distribution of s for a test of signif-
icance, if so desired. Check s over stated ¢ with table.

sample standard deviations, Sy and s

Answer: Now X = y = 1. The standard deviation of the
components X and y of the C of I are then given by oz =
oy = g/vn = 0//10 = 2.22/Y10 = .70. (The standard devi-

ation of an average is equal to the standard deviation
of an individual observation divided by the square root
of the sample size.) The standard deviation of either
of S, or sy is approximately given by the quantity oy =

o/v2n = 2.22/v20
1 is .2203(2.22) .49 in this particular case,

We begin to see then that the population or large-
sample standard deviation, o, for an individual shot is the
key parameter for the study of dispersion and accuracy. As
a matter of fact, o, the standard error of an individual, is
the real basis or standard of comparison for all the meas-
ures of precision and '"accuracy". Indeed, as we will see,
the average values of each of the various measures of
"accuracy'" turn out to be multiples of o. Similarly, stan-
dard deviations of the measures of dispersion or "accuracy"
turn out to be fractions of o also.

.50. The exact value from our Table

With the definition of and an appreciation for the im-
portance of the population standard deviation ¢, and also a
recognition of its usefulness, we are, therefore, now ready
to proceed with the analysis of the other measures of dis-
persion and "accuracy', First, however, we will discuss the
two dimensional measure of dispersion called the Circular
Probable Error (CEP or CPE), and the one directional measure
of dispersion or precision called the Probable Error (PE).

4. THE CIRCULAR PROBABLE ERROR (CEP or CPE)
AND THE PROBABLE ERROR (PE)

A measure of dispersion (precision) which is widely used
for firings at targets is the Circular Probable Error, which
is designated by CEP or CPE. The CEP is defined as the rad-
ius of the circle about the (true) center of impact (C of I)
of the rounds, or sometimes about the point of aim, which,
includes one-half or 50% of the shots fired upon the target.
This circle has a radius of 1.1774c = the CEP, and is there-
fore the 50 percent probability circle. Thus, the standard
deviation ¢ is also quite basic to the determination of the
CEP, and moreover an efficient estimator of the quantity we
designate as ¢ will likewise give an efficient estimator of
the CEP. (The Spherical Probable Error or SEP = 1,53820¢)

If all of the shots are projected on the x-axis (or the
y-axis), the interval about both sides of the mean which in-
cludes 50% of the shots is called the Probable Error or sim-
ply the PE. That is, the interval from the true but unknown



mean minus the PE to the average plus one PE contains 50% of
the shots in the x (or in the y) direction, considering a
very large number of shots. The Probable Error is actually
.67450, i. e. PE = .67450. The PE is a one-directional or a
univariate measure of dispersion, whereas the CEP is a two-
directional or bivariate measure of precision. *

For the two-dimensional case and also for unequal stan-
dard deviations, or Oy # oy, in the x and y directions, then

Grubbs [6] gives a good approximate formula for the CEP that
is of sufficient accuracy for most practical cases. (See the
APPENDIX.) A confidence bound for the CEP appears of page 50.

5. THE EXTREME HORIZONTAL DISPERSION (EHD)
AND THE EXTREME VERTICAL DISPERSION (EVD)
[The Univariate Range (R)]

These are very simple measures of dispersion and by far
the easiest to compute. If we project the impact points on-
to the horizontal (x) and the vertical (y) axes, then we see
that the EHD is simply the difference between the greatest
and the least values of the x points, or farthest right mi-
nus farthest left projected points, and the EVD is given by
the highest minus the least values of y projected points. In
this connection, we see from Figure 1, the farthest x point
to the right is x = 4, i. e. the point (4, 3) and the left-
most point or value of x is x = -3, i. e. the value of x for
the point (-3, -1). Therefore, the EHD = 4 - (-3) = 7. For
the EVD, we see in a like manner, the maximum variation, the
range or maximm dispersion for y occurs for the two y points
(2, 4) and (2, -2). Thus, the EVD = 4 - (-2) = 6. By sim—
ply arranging the x's (or the y's) in increasing order, then
one sees that the formula for the range or the maximum dis-
persion (or the EVD or EHD) is

n

The EHD and the EVD are thus terms of the rifleman which
are widely known statistically as the "maximum dispersion”,
the "maxumum variation" or the "range" of the observations.
Note in particular that the EHD, EVD, range, etc., are uni-
variate or one-directional measures of the scatter of shots.

R=x = Xy where Xy <Xy 2 %3 < ... < XK. (7)

The probability distribution of the range, and hence the
EHD or EVD, has been the subject of very extensive study by
Dederick [2], Hartley [7], Pearson [13], and Tippett [171.
The sample range (EHD) for small samples such as for example
n=5o0rn-=10 is a random variable, as was true for the Sy

. sample statistic discussed above in Section 4. We point out
that the amount of variation in the EHD from any one sample
to another depends, of course, on the sample size and clear-
ly also on the value of the population sigma, ¢. In Table 2

* Why don't riflemen use the CEP? Or quote the unbiased estimate
of sigma? Learn that o measures round-to-round variation-imprecision—
but accuracy includes also offset of aim point! Study pages 43-45.

we give the mean or expected values and the standard devia-
tions of the range, i. e. the EHD or EVD, as a multiple of ¢
our unknown population standard deviation. The 95% or that
is the upper 5% probability levels of the range also appear
in Table 2. An example would be instructive for the range.

Example 3. By use of the computed values of Sy and Sy’ pre-

dict the EHD and the EVD and compare with observed values of
the quantities.

Answer: The estimate of Oy is sx/.9227 = 2,19/.9227 =

2.37. Then for a sample of size 10, we find from Table
2 that the expected value of the EHD would be 3.078 Sy =

(3.078)(2.37) = 7.3, as compared to the actual observed
value of 7 for the EHD, showing acceptable prediction,.

In a like manner, 3.078s_/.9227 = (3.078)(1.90)/.9227=

6.3, as compared with the Observed value of 6 for the
EVD.

Actually, instead of using Sy and sy individually, it is

seen thgt we may just as well, under the assumption and dem-
onstration of a circular distribution, or Oy = Gy = ¢, adopt

the estimate of o = 2,22 of Example 1 and multiply it by the
factor 3.078 for 10 rounds, giving 6.8 for the estimate of
either of EHD or EVD, as compared to the observed values of
7 and 6, respectively. Such differences are expected and as
a matter of fact attributable to random variations or fluct-
uations for the small sample size of 10 used here.

Example 4. Estimate the population ¢ by using a rather pop-

ular measure of precision or scatter of the shot known wide-
ly as the "Figure of Merit'" (FOM), which is simply the aver-
age of the EHD and the EVD, i, e.

FOM = (EHD + EVD)/2 = (Rx + Ry)/z . * (7a)
Find also the standard error of this estimate.
Answer: Now the FOM or the average of the EHD and EVD
ig (7 + 6)/2 = 6.5. From Table 2 for the given sample
size of 10 rounds, the mean value of the range is 3.078

times 0. Therefore, the estimate of ¢ is 6,5/3.078 (or
.3249 x 6.5) = 2.11. The estimated standard error for

this unbiased estimate is given by knc/dn/§ = (.7971) x

(2.11)/10(3.078)(1.414)] =.39. The V2 used here in the
denominator comes from the fact that we are now dealing
with the average of two ranges, i. e. the standard de-
viation of the average of two individual observations

* See footnote, page 20



TABLE 2

TABLE OF MEAN VALUES AND STANDARD DEVIATIONS OF THE RANGE R

= EHD or EVD
Sample Mean Value Reciprocal of Standard 95% Prob
Size of the mean value Deviation Level of
coefficient the
Range Range
SD(R/c)
n E(R/o) = dn l/dn - kn R.95/°
2 1.128% .8862 .8525 2.77
3 1.693 . 5908 . 8884 3.31
4 2.059 .4857 .8798 3.63
5 2.326 . 4299 .8641 3.86
6 2.534 .3946 . 8480 4.03
7 2.704 .3698 .8332 4,17
8 2.847 . 3512 .8198 4,29
9 2.970 .3367 .8078 4.39
10 3.078 .3249 .7971 4,47
11 3.173 .3152 .7873 4,55
12 3.258 .3069 .7785 4,62
13 3.336 .2998 .7704 4.68
14 3.407 .2935 .7630 4.74
15 3.472 . 2880 .7562 4.80
16 3.532 . 2831 .7499 4.85
17 3.588 .2787 .7441 4.89
18 3.640 .2747 .7386 4.93
19 3.689 .2711 .7335 4.97
20 3.735% . 2677 .7287 5.01

* Note that the mean or expected values of the range show
that it is very sensitive to sample size, the value for
n = 20 being over three times that for n = 2.

Tabular entries in the second, fourth and fifth columns
are to be multiplied by the population standard devia-
tion or an estimate of it. The values here are all re-
produced from the Biometrika Tables [14] with permission
of Prof. E. S. Pearson.

is o//2, and the standard deviation of the average of two
ranges 1is knc//ﬁ. The computed figure of .39 ind}cates
that this estimate of sigma is subject to this particular
standard error, whereas the standard deviation of an indi-
vidual observation is much larger, being 2.22.

6. THE MEAN HORIZONTAL DEVIATION (MHD) AND THE
MEAN VERTICAL DEVIATION (MVD)
(The Mean Deviation)

These measures of dispersion are also known as the mean
deviation from the mean and the mean absolute deviation. The
mean horizontal deviation (MHD) is defined as the average of
the unsigned or absolute (positive) deviations from the sam-
ple mean of the x components. That is to say the MHD is

MHD = (1/10)[|1-1| + |-3-1]% + |1-1| + ... + [3-1|1 = 1.8.

In a like manner, the mean vertical deviation (MVD) is the
average of the unsigned deviations of the y's measured from
their own sample average. Thus, for the y's we have that

MVD = (1/10)(1 + 2 + 2 + ..., + 0) = 16/10 = 1.6.
The algebraic formula for the mean deviation (MD) is

n
MD = I |xi - X|/n . (8)
i=1

The sample mean horizontal and mean vertical deviations
are rather easy to calculate as compared to the sample stan-
dard deviation, and moreover, the mean deviation is nearly
as efficient as the standard deviation of the sample in es-
timating the population standard deviation, o. The mean de-
viation has been investigated by Godwin [4]. In Table 3, we
give the expected or mean values of the sample mean devia-
tion and also the standard errors of the MD. The 95% proba-
bility levels of the mean deviation are also included.

Example 5. Estimate o from the sample MHD and MVD. How pre-
cise is the estimate?

Answer: Since the dispersions in the x and y directions
are about equal, we may as well use the average of the
MHD and MVD to gain precision, i. e. the estimator of o
is taken as ¢ = (1/2)(MHD + MVD)/(.7569) = 1.7/(.7569) =
2.25, Note how this compares with the estimate 2.22, a
quantity which was estimated by using the more efficient
estimators, Sy and sy to determine o. The precision, or

standard error, of the unbiased estimate of ¢ based then
on the average of the MHD and MVD is (.1894/.7569/2)¢ or
(.1894)(2.25)/(.7569)(1.414) = 0.40, or hence about the
same precision as we obtained for the FOM, or Figure of
Merit for the sample of size 10.

Example 6. What is the relation between the MHD and the EHD

on the average? Hence, predict the size of the EHD from the
MHD for say, 15 rounds, thereby showing a further use of the
tables.

* |-3-1| means positive value of, which is 4, etc.



TABLE 3
TABLE OF EXPECTED VALUES AND STANDARD DEVIATIONS OF THE MEAN

HORIZONTAL DEVIATION (MHD) AND MEAN VERTICAL DEVIATION (MVD)
) [The Mean Deviation (MD)]

Sample AMean Value Reciprocal of Standard 95% Prob

Size of MD Mean Value Deviation Level
Coefficient of MD of .

n E(MD/0) 1/E(MD/o) o (MD/0) MD/o
2 .5642 1.772 .4263 1.39
3 .6515 1.535 .3419 1.28
4 ,6910 1.447 . 2970 1.22
5 L7137 1.401 . 2663 1.19
6 .7284 1.373 .2436 1.16
7 .7387 1.354 .2258 1.14
8 . 7464 1.340 .2115 1.12
9 .7523 1.329 .1996 1.10
10 . . 7569 1.321 .1894 1.09
11 . 7608 1.314 .1807 1.07
12 - . 7639 1.309 .1731 1.06
13 .7666 1.304 .1664 1.05
14 . 7689 1.301 .1604 1.04
15° L7708 1.297 .1550 1.04
16 7726 1.294 1501 1.03
17 L7741 1.292 . 1457 1.02
18 L7754 1.290 1416 1.02
19 .7766 1.288 .1378 1.01
1.286 .1344 1.01

20 L7777

‘(Tabular entries in the second, fourth and fifth columns are
to be multiplied by the population sigma. All tabular values
given above are reproduced from the Biometrika Tables [14]
with the permission of Prof, E. S. Pearson)

* To illustrate a use of the 95% probability level values of
a sample statistic, suppose that we take as the estimate of
sigma the value of 2.22 we obtained by using the average of
the variances in the two directions as in Example 1. Then we
now suppose that in a further shooting of, say, 12 rounds we
obtained an MVD of 2.00. Could we accept the value of 2.22
as the population sigma of the new target firing?

The answer is yes, since for 12 rounds the 95% probability
level estimated for the new firing is 1.06 x 2,22 = 2,35, a

. value larger than expected of the random MVD = 2.00.

Answer: From Tables 2 and 3 for 10 rounds, the ratio of
expected values of EHD and MHD is 3.078/0.7569. = 4.07.
Hence, using the computed value of MHD = 1.8, we multi-
ply this by 4.07 and get 7.32, as compared to an EHD of
7 which was observed for the original data of Figure 1.
For n = 15 rounds, we would predict: EHD = 3.472(sigma)
= 3.472(1.8/.7569) = 8.3, a larger value, of course.

Example 7. For a sample of size 15, what is the relation-

ship between the average values of the sample mean deviation
and the sample standard deviation? )

Answer: From Tables 1 and 3, we see for n = 15 that the
ratio of the mean value of the sample meah deviation -to
that of the standard deviation is .7708/.9490 = .812, or
on the average the mean deviation (MD) is 18.8% smaller
than s, the sample standard deviation.

The measures of dispersion discussed so far, except the
CEP, are for either the x or the y direction separately, and
hence they are one-directional or univariate measures of the
dispersion or scatter of shots, as we have previously indi-
cated. We now turn to measures of dispersion of the impaects
which take into account both the x and y directions simulta-
neously. The measures of dispersion or precision which in-
volve both the horizontal and vertical directions in a single
estimate of the population ¢ are known as bivariate or two-
directional sample measures or statistics. As will be seen
in the sequel, the bivariate measures are more precise than
the one-directional or univariate values (sample statistics)
in estimating the unknown o, no doubt as would logically be
expected since the sample size in effect may be considered
to be "doubled", especially due to equal amounts of scatter
in the two directions. Thus, we see rather easily that the
bivariate estimates are far more "efficient".

For the two-directional measures, we will discuss first
the Radial Standard Deviation (RSD), which involves the sum
of the sample variances in the x and the y directions, this
turning out to be the most efficient estimator of sigma.

7. THE RADIAL STANDARD DEVIATION (RSD)

The Radial Standard Deviation or RSD is defined for our
purposes here as the square root of the total sum of squares
of the deviations in each of the x and y directions from the
respective sample means, divided by n, the number of impacts
or points. We see therefore that the RSD is really given by
the square root of the sum of the sample variances in x and

2

\ 2
y, i. e. s and sy.



Thus, the formula for the radial standard deviation is

_ ., 2 2.1/2
= (s, + sy) . (9)

Since si = 4.8 and s? = 3.6 for the 10 shots on the Figure 1
target, then it can be seen that the RSD is calculated as

BSD = ((1/n) [2(x;-%)2 + 2(y;-5)?1) /2

RSD = v4.8 + 3.6 = V8.4 = 2,90,

It should be noted that since we take the square root of
the sum of si and sz, then the RSD should on the average be
expected to be about v¥Z times the standard deviation of the
points of impact in either the horizontal or vertical direc-
tion. As previously indicated, we see now that the rad}al
standard deviation takes into account all of the information
on dispersion (observations) in both directions.

The radial standard deviation has been studied by Grubbs
[5], and the first two moments, or the mean and standard de-
viation, are given in Table 4, along with the 95% probabili-
ty levels of the RSD distribution.

We should keep in mind that the RSD is the most efficient of
the estimators of the population sigma we could use concern-
ing the analyses of target dispersion, but it is also some-
what more involved. (This makes little difference with the
modern-day pocket calculator).

As a point of some practical interest, we record at this
time that the probability distribution of the radial vari-
ance, i. e. the square of the RSD, is theoretically well es-
tablished, and it is therefore possible to compare the dis-
persion patterns of two targets or two riflemen in a rather
simple manner. The reader is referred to the Appendix con-
cerning this.

Example 8. For the 10 rounds fired at the target, find the

estimate of sigma and then use it to predict the size of the
observed extreme horizontal dispersion (EHD) or the extreme
vertical dispersion (EVD).

Answer: From Table 4 for n = 10 rounds, the estimate of
o is given by RSD/1.323 = RSD(.7559) = 2.90/1.323 = 2.19
as compared to the value 2.22 previously found in Exam-
ple 1. (Slight differences may be expected for the two
different approaches.) The prediction of the EHD or a
EVD is then 3.078 x 2,19 = 6.7 versus the 7 for EHD that
observed or the 6 for the EVD. The number 3.078 may be
found in Table 2 for n = 10.

Example 9. Since the sample radial standard deviation takes

into account both the dispersions in the horizontal and the
vertical directions, is it not more efficient than either of
the univariate sample standard deviations, S, or sy, assum-

ing, of course, that ox = gy = g?

Answer: We define efficiency here as the ratio of the
variance of the best unbiased estimator (the RSD) to the
variance of any other unbiased estimator. Since the va-
riance is the square of the standard deviation, then we
see using Table 4 for a sample size of 10, or any other
sample size in fact, that the variance of a unbiased es-
timate of ¢ based on the RSD may be found by simply tak-
ing the square of the ratio of the standard deviation of
the sample statistic to its mean value. This means that
the definition of precision of any unbiased estimate is
actually the coefficient of variation (times the popula-
tion ¢). As a general definition of "precision", then,
we will take it as being the ratio of the standard error
of any sample statistic or estimator to its mean value,
this ratio being finally multiplied by the population o.
(Others often define precision differently, but we pre-
fer here to use only first powers for simplicity and not
either squares or reciprocal of squares, as we will soon
see in the sequel.) Thus, for the 10 rounds fired wupon
the target and from Table 1, for example, the estimator
sx/.9227 gives an unbiased estimate of o, and the ratio

.2203/.9227 = ,239, when multiplied by the population g,
will be referred to as the "precision", since it is the
standard error of the unbiased estimator using the sam-
ple standard deviation in either the x or y direction a-
lone. In a like manner, the precision of the RSD may be
found from Table 4 for 10 rounds as being .2219/1.323 =
.168 (times ¢). Therefore, the .239 versus the .168 in-
dicates that the RSD is considerably more precise than a
one-directional estimator of ¢ such as the sample stan-
dard deviation Sy (or sy).

Finally, the efficiency of Sy (or s_) as compared to

the RSD is the square of the ratio .168/.239 = .70, this
turning out to be .49, or about 50%, say. That is, the
univariate Sy (or Sy) is only 50% as efficient in esti-

mating the population sigma as is the bivariate measure
RSD. (More will be discussed on this subject later.)

Example 10. Estimate the CEP by using the "efficient" RSD.

Answer: The estimate of o based on the RSD is 2.19 from
Example 8. Therefore, the estimate of the CEP = 1,1774¢
= (1.1774)(2.19) = 2.58. A circle of this radius about
the center of impact (C of I) will include approximately
50% of the shots. See p. 50 for a confidence bound con-
cerning the CEP.



TABLE 4
TABLE OF MEAN VALUES AND STANDARD DEVIATIONS OF THE RADIAL
STANDARD DEVIATION (RSD)

Sample Mean Value Reciprocal of Standard 95% Prob
Size of RSD Mean Value Deviation Level
Coefficient of RSD
n E(RSD/c) 1/E(RSD/o) o(RSD/o) FSD g5/0
2 . 8862 1.128 .4633 1.73
3 1.085 L9217 . 3940 1.78
4 1.175 . 8511 . 3455 1.77
5 1.226 . 8157 .3108 1.76
6 1.259 L7943 .2848 1.75
7 1.282 .7800 - . 2643 1.73
8 1.300 . 7692 .2478 1.72
9 1.313 .7616 .2338 1.71
10 1.323 . 7559 .2219 1.70
11 1.332 .7508 .2118 1.69
12 1.339 .7468 .2028 1.68
13 1.345 .7435 . 1949 1.67
14 1.350 . 7407 . 1881 1.67
15 1.354 . 7386 .1817 1.66
16 1.358 . 7364 .1760 1.65
17 1.361 .7348 .1708 1.65
18 1.364 .7331 . 1660 1.64
19 1.367 . 7315 .1617 1.64
20 1.369 .7305 .1576 1.63

(Tabular entries in the second, fourth and fifth columns are
to be multiplied by the population ¢, or an estimate of it.)

8. THE MEAN RADIUS (MR) *

To compute the Mean Radius (MR), we find merely the av-
erage of the radial distances between the observed center of
impact (C of I) of the rounds and all of the impact points
on the target. Since the C of I for the 10 rounds is loca-
ted at (1; 1) and the points of impact in the order of fir
ing are (1: 2): (_3; —l); (1: _1)’ (2: 4); (3; 0)) (4: 3):
(-1, 3), (2, -2), (-2, 1) and (3, 1), it is easily seen that'y
the radial distances could be measured directly and swiftly]

on the target, and are in fact 1, v20 = 4,47, 2, V10 = 3.16,
V5 = 2,24, /13 = 3.61, V8, = 2.83, v10 = 3.16, 3 and 2. For
example, the distance between the C of I (1, 1) and the par

ticular point (2, -2) is /?1—2)2 + [l--(—2)]2 = /10 = 3.16

* See formula (27), p. 55

The average of these ten radial distances is 2.75, which is,
of course, the mean radius, MR, We remark that each of the
radii are easily measured with a ruler on the target. More-
over, as we shall see, the mean radius is very efficient for
estimating the population sigma.

The mean values and the standard deviations of the mean
radius are derived in the Appendix, and the computed values
for samples of size 2 through 20 are given in Table 5. They
depend, of course, on the number of rounds, n, and the popu-
lation o. TFor very large sample sizes, it can be shown that
the mean values of the MR will approach 1.253c. For n = 15,
the expected value of the MR is already 1.211c, i. e. is off
by only about 3% from the large sample value.

Example 11, The mean radius (MR) of the 10 shots which were

fired at the target is 2.75. The estimate of ¢ based on the
mean radius is therefore, using Table 5 for n = 10, given by

a o0 = (.841)(2.75) = 2.31, and this compares with the value
of 2.19 obtained by using the RSD.

Example 12. What is the relative efficiency of the estimate

of o based on the MR in Example 117?

Answer: From Table 5 for the MR, the standard error of
the unbiased estimate for n = 10 is ,2063/1.189 = 0.174,
whereas from Table 4 for the RSD, the most efficient es-
timator, the equivalent standard error is .2219/1.323 or

0.168. Hence, the efficiency of the MR is (.168/.174)2=
0.94 or 94%, which is very good indeed.

9. THE EXTREME SPREAD (ES) OR THE BIVARIATE RANGE

The Extreme Spread, known as ES, or the bivariate range,
is defined as the maximum of the distances between all pos-
sible pairs of points or shots on the target. Note that in
the figure the pairs of impact points giving rise to the ex-
treme spread are the two shots located at the coordinates of
(-3, -1) and (4, 3). The numerical value of the ES is hence
the quantity

ES = /[4-(=3)12 + [3-(-1)12 = /72 + 42 = /€5 = 8.06.

The extreme spread, it should be noted, is very easy to meas-
ure with a ruler on the target and it is also rather easy to
compute. Indeed, the ES provides a very rapid measure of an
estimate of dispersion for the two-dimensional scatter dia-
gram, when divided by the appropriate constant for the sam-
ple size used. The extreme spread, like the other measures
of dispersion, is also a random variable, i. e. it varies in
a haphazard manner from one group of shots to another. The



TABLE 5
TABLE OF MEAN VALUES, STANDARD DEVIATIONS AND THE 95% PROBA-
BILITY LEVELS OF THE MEAN RADIUS (MR) *

Sample Mean Value Reciprocal of Standard 95% Prob
Size of MR Mean Value Deviation Level of MR
n E(MR/o) 1/E(MR/g) SD(MR/c) MR 95/0
2 . 8862 1.128 .4632 1.73
3 1.023 . 9775 .3738 1.68
4 1.085 .9217 . 3243 1.65
5 1.121 . 8921 . 2906 1.62
6 1.144 . 8740 . 2656 1.60
7 1.160 . 8621 . 2461 1.658
8 1.172 . 8532 . 2304 1.56
9 1.182 . 8460 .2174 1.565
10 1.189 . 8410 .2063 1.54
11 1.195 .8368 .1968 1.53
12 1.200 .8333 .1885 1.52
13 1.204 . 8306 .1811 1.51
14 1.208 . 8278 .1746 1.50
15 1.211 . 8258 .1686 1.50
16 1.214 . 8237 .1633 1.49
17 1.216 . 8224 .1585 1.48
18 1.218 . 8210 . 1541 1.48
19 1.220 .8197 .1500 1.47
20 1.222 .8183 .1462 1.47

(Tabular entries in the second, fourth and fifth columns are
to be multiplied by the population ¢, or an estimate of it.
These values were calculated from the theory covered in the
Appendix for the estimation of the mean values and standard
deviations of the MR as a function of the sample size n. The
95% probability levels for the MR were determined from a two
moment fit of a Chi variate due to Patnaik in Reference [12]
This two moment fitting procedure is explained in the Appen-
dix, Section H, for the approximate theory concerning which
we have used for the Diagonal - See also Section 11 below.)

Note: The mean radius MR is a measure (the average) of radi-
al distances. There is also the so-called '"radial error", a
measure based on the square root of sums of squares in the x
and y directions, and is described, for example, by Weil in
peference [18].

* We understand the British and some of its Commonwealth ri-
flemen define our MR as their "Figure of Merit". We like the
more descriptive "Mean Radius".

ES should not be confused with either the diameter (=2RC) of
the 'covering circle" in Section 10 or the "diagonal" (D) of
the pattern of shots discussed in Section 11 in the sequel.

In Table 6, we give the mean values, their reciprocals,
the standard deviations and the 95% probability level values
of - the extreme spread. The mean values and the standard er-
rors were originally computed by the late Prof. Samuel Stan-
ley Wilks of Princeton University in connection with a study
of the Panel on Tracking Data Analysis, Reference [11]. For
the original calculations, a Monte Carlo sampling procedure
was used to determine the means and standard deviations for
the ES. These particular calculations were programmed on an
IBM 7090 computer using the Fortran language by Prof. Wilks
and Mr. Paul Raynault of Princeton University. In 1975, an
improved Monte Carlo experiment was conducted by Taylor and
Grubbs [16] using much larger sample sizes for establishing
both the moments and the percentage points of the distribu-
tion. Note that the mean value of the ES is very sensitive
to the sample size.

Example 13. By using the extreme spread, ES, find the esti-
mate of the normal population sigma which 1s unbiased.

Answer: The unbiased estimate of o = (.262)(8.06) = 2.1

Example 14. What is the standard error of the estimate that
we have calculated in Example 13?
Answer: In Example 9 we learned how to compute the sig-

ma of an unbiased estimate. Using this procedure, it is
easy to find from Table 6 using a sample size of 10 that

Standard error of ES/3.813 = (.745/3.813)(2.1) = 0,41

Example 15. What is the efficiency of the  extreme spread
for 10 rounds?
Answer: As computed previously in Example 9 for the sam-

ple standard deviation, we have that the efficiency of
the extreme spread for n = 10 rounds is given by

(.2219/1.323)2 ] (.745/3.813)2 = ,74 or 74%,
where we have used Tables 6 and 4.

10. THE RADIUS OF THE COVERING CIRCLE (RC or RCC)

The Covering Circle is defined as the smallest circle of
all such circles which contains on it or inside it each and
every point of impact. The radius of the covering circle or



TABLE 6
TABLE OF MEAN VALUES, STANDARD. DEVIATIONS AND THE 95% PROBA-
BILITY LEVELS OF THE EXTREME SPREAD (ES)

Sample Mean Value Reciprocal of Standard 95% Prob
Size .of ES Mean Value Deviation Level of ES
n E(ES/o) 1/E(ES/o) SD(ES/o) ES 95/0
2 1.772 .564 . .932 3.462
3 2.406 .416 . 887 3.984
4 2.787 . 359 .856 4.285
5 -3.066 . 326 .828 4.519
6 3.277 .305 .806 - 4,670
7 3.443 .201 .783 4,808
8 3.582 .279 771 4,937
9 3.710 . 270 .754 5.029
10 3.813 . 262 . 745 5.118
11 3.888 .257 .735 5.174
12 3.964 .252 -.725 5.229
13 4,039 .248 .714 5.285
14 4.115 .243 .704 5.340
15 A 4.190 .239 .694 5.396
16 4.242 .236 .689 5.443
17 4,295 ‘ .233 .684 5.490
18 4,347 .230 .678 5.536
19 4.399 . 227 .673 5.583
20 4.452 ‘ .225 .668 5.630
25 4.639 .216. .650 5.790

(Tabular entries in the second, fourth and fifth columns are
to be multiplied by the population o, or an estimate of it.
Since these are Monte Carlo values, the third decimal places
may be in error.) :
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its diameter provides a fairly rapid measure of the disper-
sion of the shots on the target. The diameter of the cover-
ing Circle is not generally the same as the Extreme Spread
or the bivariate range, it should be noted. Daniels [1] has
made a study of the radius of the Covering Circle, and so we
give in our Table 7 the key moment constants which are taken
from Daniels' Biometrika paper [1]. Letting RCC (or RC) de-
note the radius of the Covering Circle, then expected values
and also standard deviations of the RCC are given in Table 7
along with the 95% probabllity levels of the distribution.

The RCC is.also a random variable, as it varies from one
group of shots to another in a random manner, depending very
much on the size of the population o, of course.

<.
1

: TABLE 7 .
TABLE OF MEAN VALUES, STANDARD DEVIATIONS AND THE 95% PROBA-
BILITY LEVELS OF THE RADIUS OF THE COVERING CIRCLE :(RC)

Sample Mean Value Reciprocal of Standard - 95% Prob
Size of RC -Mean Value . Deviation Level of RC
'n E(RC/0) 1/E(RC/g) SD(RC/a) RC 5/0

2 .8862 1.128 .4632 1. 731
3 1.211 . 8258 T ,4461 2.000
4 1.409. .7097 .4274 2.157
5 1.548 .6460 .4123 2.268
6 1.655 .6042 .4001 ' 2,352
7 1,742 . 5741 .3901  2.421
8 1.814 .5513. .3816° ' 2.478

) 1.876 .5330 .3743  2.527
10 1.929 .5184 . 3680 2.570
11 1.977 .5058 .3625 2.608
12 2.020 .4950 . 3575 2.642
13 2.058 .4859 . 3528 2.673
14 2.093 .4778 . 3484 2.702
15 2,125 .4706 . 3440 2.728
16 2.153 .4645 .3411 2,749
17 . 2.180 .4587 .3384 2.770
18 2.206 .4533 .3357 2.791
19 2.231 .4482 .3333 2.812
20 . 2.255 . .4435 .3309 2.833
30 2,427 .4120 . .3126 2.975
40 2.543 .3932 . 3010 3.071
50 2.629 . 3804 .2024 - 3.143

100 2.881 .3471 .2704 3.358

(Tabular entries in the second, fourth and fifth columns are
to be multiplied by the population ¢ or an estimate of that
0. The values of Table 7 were obtained from Daniels' Biome-
trika paper [1l] with permission, and entries for n = 16 -~ 19
were obtained by interpolation. For interested readers, the
diameter of the Covering Circle, DC or DCC = 2 RCC, so that
the mean values of the DCC would be double that we give for
RC in the second column, the standard deviations of the DCC

would be two times the figures in column four, and hence also

the 95% probability levels double those listed in the fifth
column above. )



The Covering Circle is particularly useful for rifle fir-
ings at . relatively short ranges or matches when the indi-
vidual impacts are not discernible on the target, but rather
the result of the firing is a big hole with all of the shots
having gone through it. It should be mentioned in this con-
nection that the diagonal (see below) also could be used and
is apparently more efficient in estimating o.

Example 16. Use the radius of the Covering Circle to deter-
mine an unbiased estimate of o.

Answer: For the group of 10 shots on Figure 1, it turnms
out that the diameter of the covering circle is equal to
the extreme spread, so that the radius of the covering
circle is thus 8.06/2 = 4.03. (For all farings it cannhot
be expected that the extreme spread will equal the diame-
ter of the covering circle.) Anyway, using Table 7 for a
sample size of n = 10, we get

o = ,5184(4.03) = 2.09,
as compared to the value 2.19 estimated with the RSD.
Example 17. 1Is the radius of the covering circle much more

efficient in estimating o than the extreme spread for as few
as n = 10 rounds?

Answer: The 'precision" of the extreme spread turns out
to be .745/3.813 = ,195, and that likewise of the radius
of the covering circle is .3680/1.928 = .191. Therefore,
the efficiency of the extreme spread relative to that of
the covering circle radius is

(.191/.195)2 = .96 or 96%.
Thus, the extreme spread is almost as efficient for n =10

11. THE DIAGONAL (D)

The rectangle, with sides parallel to the x and y axes,
which is determined by the extreme horizontal dispersion or
variation (EHD) and the extreme vertical dispersion or range
(EVD), and includes all the shots or impacts on the boundary
or within such a rectangle, is also used to estimate the dis-
persion of the shots on the target. 1In fact, we may use the
diagonal D of this rectangle as a measure of bivariate scat-
ter just as we do the RSD, the ES, etc. The diagonal, D, is
is simply the square root of the sum of squares of the range
values, EHD and EVD, in the two directions., Thus, we have

D = /(EED)? + (EVD)Z (10)
and from the figure, we see that numerically

TABLE 8. TABLE OF MEAN VALUES, STANDARD DEVIATIONS AND THE
APPROXIMATE 95% PROBABILITY LEVELS OF THE DIAGONAL (D)

Sample Mean Value Reciprocal of Standard 95% Prob

Size of D Mean Value Deviation Level of D
n E(D/0) 1/[E(D/0) ] sD(D/q) D, g5(D/0)
2 1.772 .5643 .9294 3.46
3 2.540 3937 .9254 4.16
4 3.035 3294 .9021 4.60
5 3.397 .2945 .8795 4.91
6 3.680 «2717 .8616 5.15
7 3.911 .2557 .8483 5.35
8 4.107 .2435 .8306 5.52
9 4.276 .2339 .8143 5.66 .

10 4,423 .2261 .8061 5.79

11 4.555 .2196 .7912 5.90

12 4.672 .2140 .7871 6.00

13 4.779 .2092 .7784 6.09

14 4.877 .2050 .7690 6.17

15 4.967 .2013 .7614 6.25

16 5.050 .1980 .7564 6.32

17 5.128 .1950 .7461 6.39

18 5.200 .1923 .7424 6.45

19 5.268 .1898 .7356 6.51

20 5.332 .1875 .7297 6.56

(Tabular entries in the second, fourth and fifth columns are
to be multiplied by the population ¢ or an estimate of that
o. The values given in Table 8 were determined by using the
Chi approximation of Patnaik [12], which is described in the
Appendix. Since the diagonal D consists of components under
the radical involving the ranges in both the x and y direc~
tions, then the problems of approximating the true distribu-
tion of the diagonal are very similar to those of the range.
The 95% probability levels were also obtained by using this
same approximation of Patnaik [12]).

The use of the diagonal may be especially desirable, for
example, when the impact points are not clearly discernible.

Note:

There may be some patterns of shots on the target, which
result in the extreme spread ES, the diameter of the cover-
ing circle 2RC and the diagonal D all being equal.





