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1. Introduction and summary. In many practical applications involving
statistical estimation, “inefficient” estimates may be the ones of choice for rea-
sons of economy, in money, time, and effort. The usefulness of such estimates,
which are generally based upon order statistics, was highlighted by Mosteller
[6] who reasoned that observations in large samples could easily be arranged in
order of magnitude by punch-card equipment. Moreover, there are many in-
stances where the observations in the sample, by the nature of the measurement,
occur naturally in order of magnitude. This happens, for example, in the case of
fatigue and life-testing studies. This study deals with certain estimation prob-
lems of the one- and two-parameter exponential distributions.

The present study provides, for the parameters of the exponential distribu-
tion, estimators that are linear functions of specific subsets of the order statis-
tics. These estimators are optimal in the sense that they provide the most
efficient linear combinations of a given number of order statistics.

The use of only two observations from a sample, particularly a small one,
represents a situation meriting special study. This paper will first consider
which are the best two and which are the worst two order statistics to select
for estimation purposes in samples up to size 20. Some consideration will also
be given to the use of symmetrically placed order statistics.

For large samples, Ogawa [8], [9] derived optimum spacings to select subsets
ranging in size from 1 to 15 for use as linear estimators in the one-parameter
exponential distribution. The present paper will consider the same problem
where a portion of the sample has been censored at the beginning of the dis-
tribution.

2. Estimation using two observations in small samples.
(a) Consider first the two-parameter exponential distribution given by the
density

1/o)e ®™°, <,
, elsewhere.

(21) 1@ =4

The purpose is to obtain the minimum variance unbiased linear estimates for
w and ¢ using only two order statistics from a sample of size n. Suppose that these
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two order statistics are designated Ith and mth in order of magnitude such that
Zom = rm < T = T -

The matrix of coefficients of (u, ¢) for the expected values (4) of these order
statistics and the variance-covariance matrix (V) are as follows:

lrl ia [ib Zijb
(2.2) A= - V=i, .
‘_1 leb L;b leb

where D ta = Dty 1/(n —i+1),and D 1b= D ta1/(n — ¢+ 1)
To obtain the best linear unbiased estimates, we use

(2.3) (A'VA) AV = (1 > a) o X .

e -1 1

Therefore, the estimates are
m . m l
(24) gt = <1 /E a) [x(z) 20— T D a] )
I+1 1 1
(2.5) o= (1/,2“) (T — zwy)-
I+1

The variances for these estimates are taken from (4'V'4)™ and are

w e fEe [ 5/ (5]

(2.7) V(s*) = {gjl b (f) a)z} 7.

+1

The (mean)® = u* 4 ¢* and is given by

(28) (mean)* = (1 i a> {<i a — 1) za + <1 - Ei: a) x<m>}

+1

and its variance is

(29) V(mean*) = {[zi: b:l 4+ [(i a _ 1)2 g:l b (g:l a)j} o

The expression for the variance of ¢* (2.7) can be rewritten as

V") =1/ =0+ + A/ —m+ 1)°)/

(2.10) 2 2
{1/n =10 + -+ +1/(n —m+ 1)}]o.
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This expression attains a minimum for I = 1 and m according to the values of

TABLE A
Sets of two optimal order statistics to estimate parameters in the two-parameter
exponential distribution

Order of "
Observations 26 7-10 11-15 16-20 21
! 1 1 1 1 1

n shown in Table A. It can be shown that the same results hold for estimating
w and therefore the mean as well.

Table 1 gives the coefficients to be used for estimating p and ¢ with two order
statistics, the variances of these estimates, and their efficiencies relative to the
best linear unbiased estimate based upon the complete sample. It can be seen
from this table that in estimating u, the efficiency of two order statistics relative
to the complete sample is high and, in fact, is never less than 93.7 %, this value
occurring when n = 6. The efficiency increases with sample size after this point
and at n» = 20 it has attained a value of 97.55 %. The efficiency in estimating o
is not as high as that for u, and decreases almost consistently, although slowly,

TABLE 1

Best two observations in estimating p and o, the coefficients in the BLE, the variances of the
estimates and their relative efficiency (for the two-parameter exponential distribution).

Estimation of u Estimation of o
n l m Coefficient of Coefficient of
Vw* RE ———————————— V(o)* R.E.
X X(m) X %(m)

3 1 3 1.22222 —.22222 .17284 96.43 —.66667 ~+.66667 .55556 90.00

4 1 4 1.13636 —.13636 .08781 94.90 —.54545 ~+.54545 .40496 82.31

5 1 5 1.09600 —.09600 .05312 94.13 —.48000 -.48000 . 32800 76.22

6 1 6 1.07299 —.07299 .03558 93.70 —.43796 -+.43796 .28073 71.24

7 1 6 1.09852 —.09852 .02518 94.57 —.68966 ~+.68966 .23372 71.31

8 1 7 1.07848 —.07848 .01878 95.10 —.62780 +-.62780 .20172 70.82

9 1 8 1.06468 —.06468 .01455 95.44 —.58212 +.58212 17872 69.94
10 1 9 1.05468 —.05468 .01161 95.67 —.54676 +.54676 .16136 68.86
11 1 9 1.06362 —.06362 .00948 95.92 —.69981 -+.69981 .14680 68.12
12 1 10 1.05483 —.05483 .00787 96.26 —. 65795 -+.65795 .13335 68.18
13 1 1 1.04798 —.04798 .00664 96.51 —.62375 ~+.62375 12255 68.00
14 1 12 1.04251 —.04251 .00568 96.70 —.59519 +.59519 .11368 67.67
15 1 13 1.03806 —.03806 .00492 96.85 —.57092 ~+.57092 .10626 67.22
16 1 13 1.04200  —.04209  .00429  97.02  —.67345  +.67345  .00947  67.02
17 1 14 1.03801  —.03801  .00378  97.19  —.64625  -+.64625  .00323  67.04
18 1 15 1.03459  —.03450  .00336  97.33  —.62258  +.62258  .08787  66.94
19 1 16 1.03167  —.03167  .00300  97.45  —.60177  +.60177  .08321  66.77
20 1 17 1.02016  —.02016  .00270  97.556  —.58320  +.58320  .07912  66.52
n 1 .7968n 1.00000 .00000 .00000 100.00 —.6275 +.6275 64.76

R.E. = Relative efficiency of the estimator is the efficiency relative to the minimum variance linear unbiased
estimator based upon the complete sample.
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as the sample size increases. It approaches an asymptotic limit of 64.76 % rela-
tive efficiency.

The two largest order statistics give, in general, the lowest overall efficiency
among all linear combinations of pairs of order statistics, and it is generally
desirable to choose a pair as different as possible from the two largest order
statistics, particularly in estimating u. To estimate the value of u, the farther
is from 1, the worse becomes the efficiency. The importance of the initial order
statistic is not as great in estimating o, however, and the loss is not so great,
particularly as 7n increases.

(b) Consider now the one-parameter exponential distribution (so that the
value of u is known to be zero). In this case, the comparable equations are

l

BB (Brge)eal/

(B 5+ (5]

(2.12) V() = {(i b g; b)/ [(Zi) a>2 g b+ sz b (ﬁ% a>2:|} .

The variance for estimating ¢ with two order statistics attains a minimum at
different points than previously, and the results are summarized in Table B.

TABLE B
Sets of two optimal order statistics to estimate o in the one-parameter exponential
distribution
Order gf ”
Observations 2-4 5-7 8-11 12-15 16-18 19-21
l n—1 n— 2 n—3 n — 4 n—6 n—17
m n n n n n—1 n—1

It is clear from Table B that the first ordered observation is no longer crucial
as in the estimation procedure for the two-parameter exponential distribution.
In fact, the value of I is almost the opposite in Table B since it deviates increas-
ingly from the small order statistics as the sample size increases.

Table 2 presents the coefficients for 2 and z(.y to be used in estimating o
from the one-parameter exponential distribution, the variances of the estimates,
and their efficiency relative to the best linear estimate based upon complete
sample. Note that the efficiency decreases gradually to a level of 84.63% for
n = 20. Also, it can be observed that the estimate based upon the highest two
order statistics has a variance equal to the coefficient to be used with (s .

For large values of n, the asymptotic efficiency for estimating o with only two
order statistics is 82.03 %, and the two order statistics to be used are .6386n
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TABLE 2
Best two observations, the coefficients in the best estimate, the variance of the estimate
and its relative efficiency (for the ome-parameter exponential distribution).

Coefficient of

n 1 m Variance R.E.
EZ0) F(m)

2 1 2 .50000 .50000 .50000 100.00

l=n—-1 3 2 3 . 44737 .34211 .34211 97.44
4 3 4 .41304 .26522 .26522 94.26

5 3 5 .52800 .25682 .21402 93.45

l=n—2 6 4 6 .49389 .21665 .18055 92.31
7 5 7 46753 .18862 .15718 90.89

'8 5 8 m=mn .55363 18776 .13940 89.67

l=n—3 9 6 9 .52706 .16799 .12472 89.09
=n 10 7 10 .50503 .15250 .11322 88.32
11 8 11 .48639 .14003 .10396 87.44
12 8 12 .55263 .14062 .09609 86.72

l=n—4 13 9 13 .53345 .13047 .08915 86.28
=n 14 10 14 .51670 .12190 .08330 85.75
15 11 15 .50192 .11458 .07829 85.15
16 10 15 .51933 .21701 .07354 84.98
l=n—26 17 11 16 .50658 .20443 .06928 84.91
18 12 17 .49505 .19343 .06555 84.75
g m=mn—1

l=n—1 19 12 18 .53132 .19337 .06213 84.71
=n 20 13 19 .51982 .18387 .05908 84.63
large * ** .5232 .1790 82.03

R.E. = Relative efficiency of the estimator is the efficiency relative to the minimum
variance linear unbiased estimator based upon the complete sample.
* .6386n
** 9266n

and .9266n. If we check these values against n = 20, ] = 12.77 and m = 18.53.
By adjusting them to the nearest integral values, order statistics 13 and 19
result, and these are the same as those in Table 2. Similarly, the asymptotic
expressions for the coefficients, .5232 and .1790 compare favorably with the
exact values given in Table 2 for n = 20, viz. .5198 and .1839. The closeness
of the results for n = 20 as well as neighboring sample sizes suggests that the
asymptotic approximations might be used instead of the exact values for n > 20.

Inasmuch as the optimal values of [ and m appear to come from the upper
end of the distribution, it suggests that an estimator based upon the smallest
order statistics will have maximum loss in efficiency. In fact, the worst set of
two order statistics is the first and second. The variance of an estimate based
upon the first two order statistics is .5, and the relative efficiency to the com-
plete sample is 1/(2n) — 0 as n — .
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3. Estimation using two symmetric observations in small samples. Although
the use of two symmetric order statistics may not always be the most efficient
pair to use in estimating u and ¢, it sometimes has the advantage of being simpler
to select the required observations. This convenience afforded by symmetry
suggests a special investigation into the nature of efficiency with two symmetrical
order statistics. In this section the discussion of efficiency in using two order
statistics as estimators is intended to be relative to the variance of the best
linear estimates based upon all order statistics. This will permit us to judge
not only which two symmetric order statistics are best in the group of all two-
fold symmietric sets but also the efficiency of using two particular order statistics
instead of the best linear estimate based upon all observations.

Recalling the material presented in Section 2, the two order statistics to
estimate both parameters in the two-parameter exponential distribution which
have highest efficiency for samples of size n < 6 are the first and last order
statistics. Inasmuch as these are already symmetric, it is clear that the best two
symmetric order statistics must be based upon 2y and z¢, where n < 6.

The graphs shown in Figures 1 and 2 present in more detail the efficiencies
of the estimates, u* and o*', where the primes represent estimates using two
symmetric order statistics for sample sizes of n = 20. The relationships in Fig-
ure 1 show clearly that the first and last order statistics are always the sym-
metric ones to be preferred for maximum efficiency in estimating u. Moreover,
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F1a. 1. The relative efficiency of u*’ based upon two symmetric order statistics from the
two-parameter exponential distribution.
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F1a. 2. The relative efficiency of ¢*’ based upon two symmetric order statistics from the
two-parameter exponential distribution.

the efficiency of the first and last order statistic is quite high relative to the
best linear estimate using the entire sample, because this pair includes the first
order statistic which is known to be most influential in determining u. Conse-
quently, as the two symmetric order statistics diverge from the extremes of the
distribution, the efficiency drops rapidly.

The relationships in Figure 2 show that the efficiencies of estimating ¢ with
two symmetric order statistics are not as high as those observed in estimating u.
The maximum efficiencies for estimating ¢ with two symmetric order statistics
are achieved when the order statistics are chosen as shown in Table C.

TABLE C

Most efficient two symmetric order statistics to estimate o in two-parameter
exponential distribution

Sample size

2=n<8 9=#n=16 17=#2=20

Order of observations Tay, T T@), Tm-1) @), Ln-2)
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Thus, the efficiency of using the first and last order statistic to estimate o
drops very rapidly for » > 2, and by the time that n = 9, the penultimate
order statistics exceed it in efficiency among the class of symmetric pairs.

For the one-parameter exponential distribution, the maximum efficiencies
for estimating o with two symmetric order statistics can be determined from
Figure 3, and are attained when the order statistics are selected as shown in
Table D.
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F1a. 3. The relative efficiency of ¢*’ based upon two symmetric order statistics from the
one-parameter exponential distribution.

TABLE D

Most efficient two symmetric order statistics to esttmate o in one-parameter
exponential distribution

Sample size

o
IA
B

I\
wn
o

I\

n<10 11=p<15 16=<7<=20

Order of
Observations Ty, Tm) Z@2), Tm-1) T3), Tm—2) T) , Tm-3)

Since ¢ is most efficiently estimated in the one-parameter exponential dis-
tribution by Z, then any estimate based upon the difference or the weighted
sum of two order statistics will be of relatively lower efficiency. For example,
the range and quasi-range would be expected to produce an estimate of ¢ with a
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variance considerably higher than that of Z. Harter [3] found that the efficiency
of quasi-ranges in this case ranged from 50.00 to 61.73 per cent for samples of
size 2 to 100. The quasi-range estimators would have lower efficiency than the
use of the two symmetric order statistics here because the former uses equal
and opposite weights whereas the latter estimates have positive and differing
weights. These weights are obtained as follows:

The coefficient or weight for the first ordered observation used in the estimate,
8ay Z(r) , 18

r+1 1 r4+1

n—r+1 T r n—r+1
[T rza-T0'% o],
1
where ¢ and b are defined in Section 2 and where

(BN E 5 (£

1 r+1

The coefficient for its symmetric mate, say 2+ is

T n—r41
¢ (z 5> a> .
1 r41
4. Optimal spacings in large samples. Ogawa [7] developed the general large
sample theory for estimating location and scale parameters based upon sample
quantiles. In particular, he determined the asymptotically optimal spacings for
the normal distribution. Although several of the tables in that publication had
regrettable errors in computation, the numerical results have been confirmed by
Cox [1], Kulldorff [4], [5] and others.
These results have also been applied to the one-parameter exponential dis-
tribution by Ogawa [8], [9] and his notation is used herewith for convenience.
Consider the single-parameter exponential distribution with density function,

—z/o
0@ = {3/ 02

(4.1) elsewhere,

where we have an ordered random sample of size n.

Let there be k fixed real numbers, A1, A2, + -+, Az, such that 0 < A < N <
..o < N < 1, and suppose that we select the & sample \; quantiles (7 = 1,
2, -+, k) to estimate o. The k order statistics are Zwmy) , Tmy, ** 5 Tap »
where n; = [nAj] + 1, and the symbol [n);] stands for the greatest integer not
exceeding n\; . (This definition of the sample quantile has been chosen for con-
venience along the lines outlined by Cramér ([2], 367-68), but any reasonable
alternative definition would lead to the same asymptotic results.)

The standardized exponential distribution has density

‘F(x) _ {exp(—x), 0= z,

(4.2)
0, elsewhere.
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If the \;-quantile of the standardized distribution is u;, so that
Ai =1 — exp(—us),
and that of the original distribution is z;, then
(4.3) ©i = ww, G=1,2 k.

*Ogawa [81, [9] has shown that the asymptotically best linear unbiased estimate
(¢7) of o is

(4.4) o = Y/K,,
where
k+1
v = 21 [u; exp (—us) — Uiy exp (—uia) [T, €xp (—us)
— Zmi_p exp (—us)]/lexp (—uia) — exp (—ua)]
and where
k+1

K, = ;[ui exp (—u;) — ui1 exp (—ui1)*/[exp (—uit) — exp (—u)l,

and the latter is also the asymptotic relative efficiency of the linear systematic
statistic based upon the sample A;-quantiles. Another method of expressing Y is

k
(4.5) Y = Z} AT (n;)

where
a; = exp (—u;){[u; exp (—us) — Uiy exp (—ui—n)]/[exp (—ui1) — exp (—uy)]
— (Ui exp (—uip1) — usexp (—uq)l/
lexp (—u:) — exp (—wi)l}.

The coefficients a; for optimal spacings have been tabulated in the references
by Ogawa for k = 1(1)15. Inasmuch as the resultant value of Y has to be
divided by the particular K for the given value of %, in order to derive ¢, it is
more convenient to tabulate b; such that

k
(4.6) o= 2 by -
=1
The values of b; (¢ = 1, 2, ---, 15), u; and A, are given in Table 3 such that

the asymptotic relative efficiency, K, (also tabulated) is a maximum. This
table is repeated here because the earlier ones by Ogawa had values of a; rather
than b; as well as several computational errors in the third and fourth decimal
places.*

4 A recent report by Kulldorff [5a] improved the precision of Ogawa’s and our own tabu-
lations (in the fourth decimal place) by use of an electronic computer.
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The values given in Table 3 have been especially helpful in dealing with es-
timates of the parameter in samples containing a large series of cases. For ex-
ample, the distribution of age at death among those dying under one year of
age appears to follow closely the one-parameter exponential distribution. In
the United States, such infant deaths are over 100,000 per year and the use
of order statistics is well justified in estimation problems relating thereto.

Situations occur, however, where the optimum spacings given in Table 3
cannot be applied because the magnitude of the initial ordered observations
in the sample have been censored. Thus, many countries do not classify age at
death in the same detail as done in this country in which the basis of classifica-
tion is under 1 hour, 1.0 to 23.9 hours, 24.0 to 47.9 hours, etc. Where the vital
statistics do not specify the exact age at death under 1 day, for instance, about
40% of the deaths under one year will have had the initial ordered observations
censored. This means that if the magnitude of the first 40 % of the ordered ob-
servations were unavailable, one would be restricted to the use of four or less
spacings since \; < .40 for all k& = 5.

A general solution to this problem would be to consider the asymptotically
optimal spacings when the lowest available sample quantile is preassigned.
Under the assumption that A, is fixed in advance, it is of interest to know the
optimal spacings for the best linear unbiased estimate and their efficiency rela-
tive to the case when A, is not predetermined.

Following the principle used by Ogawa, the asymptotically optimal spacings,
for a fixed w, , are those which maximize K, . Proceeding along the lines of de-
velopment used in the unrestricted case, it is soon evident that for this specific
distribution the optimal spacings of the sample quantiles, when ; is fixed, have
the same relative positioning as when A, is not preassigned.

Table 4 presents as an illustration optimal spacings for k up to 9 when \; = 4.
An examination of the values of K in this table reveals that the loss of efficiency
in estimating o is rather trivial even in those cases not anticipated. For example,
consider &k = 9, in Table 3, where the asymptotic efficiency is 97.98 per cent
when A, = 25.83 percentile, and the subsequent quantiles are chosen accord-
ingly. If, however, the 25th percentile is not available or, in fact, even if 40 %
of the data are censored such that A; must be .400, then the results in Table 4
show the asymptotic efficiency is affected only slightly from 97.98 to 97.66.

Addendum. Since submission of the original manuseript upon which the pres-
ent revision is based, Harter has published a paper closely related to the work
contained herein. His tabulations confirm the values given in Tables 1 and 2
and extend the cases up to n = 100. His coefficients have been carried out to
six decimal places. The reference is Harter, H. Leon (1961). Estimating the
parameters of negative exponential populations from one or two order statistics.
Ann. Math. Statist. 32 1078-1090.


Rectangle


EXPONENTIAL DISTRIBUTION ESTIMATES 115

TABLE 4

Optimum spacings, asymptotic relative efficiencies and coefficients in the BLE of
o, given Ay = 4

k
5 6 7 8 9
U1 .5108 .5108 .5108 .5108 .5108
A .4000 .4000 .4000 .4000 .4000
by .3466 .3163 .2949 .2790 . 2666
Uz 1.1111 1.0102 .9382 .8849 .8431
A .6708 .6359 .6087 .5872 .5696
b, .2293 .2051 .1852 .1685 .1546
Us 1.8652 1.6105 1.4376 1.3123 1.2172
As .8451 .8002 .7625 .7308 .7039
bs .1386 1374 .1327 .1267 .1204
Ug 2.8829 2.3646 2.0379 1.8117 1.6446
A4 .9440 .9060 .8697 .8366 .8069
by .0701 .0830 .0889 .0908 .0907
Us 4.4765 3.3823 2.7920 2.4120 2.1440
As .9886 .9660 .9387 .9104 .8828
bs .0240 .0420 .0537 .0608 .0649
U 4.9759 3.8097 3.1661 2.7443
e .9931 .9778 .9578 .9357
be .0144 .0272 .0368 .0435
Uy 5.4033 4.1838 3.4984
A7 .9955 .9848 .9698
by .0093 .0186 .0263
Us 5.7774 4.5161
A .9969 .9891
bs .0064 .0133
Usg 6.1097
Ao .9978
be .0045
K, .9476 .9600 . .9678 .9730 .9766

REFERENCES

[1] Cox, D. R. (1957). Note on grouping. J. Amer. Statist. Assoc. 30 543-547.

[2] Cramiir, HARALD (1946). Mathematical Methods of Statistics, Princeton University Press,
Princeton.

[38] HarTER, H. LEON (1959). The use of sample quasi-ranges in estimating population
standard deviation. Ann. Math. Statist. 30 980-999.


Rectangle


116 SARHAN, GREENBERG, AND OGAWA

[4] KuLLpORFF, GUNNAR (1958). Maximum likelihood estimation for the exponential dis-
tribution when the sample is grouped. Department of Statistics, University of
Lund, Sweden.

[5] KuLLporrr, GUNNAR (1961). Coniributions to the Theory of Estimation from Grouped
and Partially Grouped Samples. Almqvist and Wiksell, Stockholm.

[5a] KuLLpoRFF, GUNNAR (1962). On the asymptotically optimum spacings for the expo-
nential distribution. Preliminary Report, Department of Statistics, University
of Lund.

[6] MosTELLER, FREDERICK (1946). On some useful inefficient statistics. Ann. Math. Statist.
17 377-408.

[7]1 Ocawa, Junsiro (1951). Contribution to the theory of systematic statistics, I. Osaka
Math. J. 3 No. 2 175-213.

[8] Ocawa, Junsiro (1957). A further contribution to the theory of systematic statistics,
University of North Carolina Institute of Statistics, Mimeograph Series, No. 168,
1-32.

[9] Ocawa, Junsiro (1960). Determination of optimum spacings for the estimation of the
scale parameter of an exponential distribution based on sample quantiles. Ann.
Inst. Statist. Math. 12 135-141.


Rectangle


	Contents
	image 1
	image 2
	image 3
	image 4
	image 5
	image 6
	image 7
	image 8
	image 9
	image 10
	image 11
	image 12
	image 13
	image 14
	image 15

	Issue Table of Contents
	Annals of Mathematical Statistics, Vol. 34, No. 1, Mar., 1963
	Volume Information [pp.i-xvi]
	Front Matter
	Optimum Properties and Admissibility of Sequential Tests [pp.1-17]
	On the Optimality of Sequential Probability Ratio Tests [pp.18-21]
	On the Efficiency of Optimal Nonparametric Procedures in the Two Sample Case [pp.22-32]
	The Sample Mean Among the Extreme Normal Order Statistics [pp.33-55]
	呥獴猠䅵硩汩慲礠瑯 유呥獴猠楮⁡⁍慲歯瘠䍨慩渠孰瀮㔶ⴷ㑝
	Selection of the Best Treatment in a Paired-Comparison Experiment [pp.75-91]
	A Remark on a Paper of Trawinski and David Entitled: "Selection of the Best Treatment in a paired-Comparison Experiment" [pp.92-94]
	Distribution of the Two-Sample Cramer-Von Mises Criterion for Small Equal Samples [pp.95-101]
	Simplified Estimates for the Exponential Distribution [pp.102-116]
	Optimum Estimators of the Parameters of Negative Exponential Distributions from One or Two Order Statistics [pp.117-121]
	Asymptotic Theory for Principal Component Analysis [pp.122-148]
	On Testing a Set of Correlation Coefficients for Equality [pp.149-151]
	Statistical Analysis Based on a Certain Multivariate Complex Gaussian Distribution (An Introduction) [pp.152-177]
	The Distribution of the Determinant of a Complex Wishart Distributed Matrix [pp.178-180]
	Some Results on the Distribution of Two Random Matrices Used in Classification Procedures [pp.181-185]
	Distribution of Definite and of Indefinite Quadratic Forms from a Non- Central Normal Distribution [pp.186-190]
	Approximations to Multivariate Normal Orthant Probabilities [pp.191-198]
	A Definition of Subjective Probability [pp.199-205]
	On a Class of Stochastic Processes [pp.206-212]
	Stochastic Processes on a Sphere [pp.213-218]
	佮⁃潮癥牧敮捥⁴漠⬠∞⁩渠瑨攠䱡眠潦⁌慲来⁎畭扥牳⁛灰⸲ㄹⴲ㈲�
	Non-Existence of Everywhere Proper Conditional Distributions [pp.223-225]
	Entropy and Conjugacy [pp.226-232]
	Collapsed Markov Chains and the Chapman-Kolmogorov Equation [pp.233-237]
	The Estimation of a Fundamental Interaction Parameter in an Emigration- Immigration Process [pp.238-259]
	Convergence Theorems for Multiple Channel Loss Probabilities [pp.260-273]
	Dynamic Stochastic Processes [pp.274-283]
	A Mathematical Theory of Pattern Recognition [pp.284-299]
	On Queues in Tandem [pp.300-307]
	The Poisson Tendency in Traffic Distribution [pp.308-311]
	The Probability in the Tail of a Distribution [pp.312-318]
	A Characterization of the Uniform Distribution on a Compact Topological Group [pp.319-326]
	Notes
	The Convex Hull of Plane Brownian Motion [pp.327-329]
	On the Sample Functions of Processes which Can be Added to a Gaussian Process [pp.329-333]
	Note on Two Binomial Coefficient Sums Found by Riordan [pp.333-335]
	Tail Areas of the t-Distribution from a Mills'-Ratio-Like Expansion [pp.335-337]
	A Finite Criterion for Indecomposable Channels [pp.337-338]
	Note on Queues in Tandem [pp.338-341]
	A Note on the Re-Use of Samples [pp.341-343]
	On Stochastic Approximations [pp.343-346]
	The Use of the Range in Place of the Standard Deviation in Stein's Test [pp.346-347]
	On Necessary Conditions for the Existence of Some Symmetrical and Unsymmetrical Triangular PBIB Designs and BIB Designs [pp.348-351]

	Correction Note and Acknowledgment of Priority
	Correction to "Some Theoretical Aspects of Diffusion Theory in Population Genetics" [p.352]
	Acknowledgment of Priority: "Comparison of Least Squares and Minimum Variance Estimates of Regression Parameters [p.352]

	Book Review
	untitled [pp.353-354]

	Abstracts of Papers [pp.355-358]
	News and Notices [pp.359-374]
	Publications Received [p.374]
	Back Matter



