Difference between revisions of "Closed Form Precision"

From ShotStat
Jump to: navigation, search
(Created page with "Measuring Precision showed how a single parameter ''σ'' characterizes the precision of a shooting system. This ''σ'' is the parameter for the Rayleigh distribution with...")
 
Line 1: Line 1:
 
[[Measuring Precision]] showed how a single parameter ''σ'' characterizes the precision of a shooting system.
 
[[Measuring Precision]] showed how a single parameter ''σ'' characterizes the precision of a shooting system.
  
This ''σ'' is the parameter for the Rayleigh distribution with probability density function <m>\frac{x}{\sigma^2}e^{-x^2/2\sigma^2}</m>.
+
This ''σ'' is the parameter for the Rayleigh distribution with probability density function <math>\frac{x}{\sigma^2}e^{-x^2/2\sigma^2}</math>.
  
 
Using the characteristics of the Rayleigh distribution we can immediately compute the three most useful [[Describing_Precision#Measures|precision measures]]:
 
Using the characteristics of the Rayleigh distribution we can immediately compute the three most useful [[Describing_Precision#Measures|precision measures]]:
  
Radial Standard Deviation <m>RSD = \sigma \sqrt{2}</m>.  The expected sample RSD of a group of size ''n'' is
+
Radial Standard Deviation <math>RSD = \sigma \sqrt{2}</math>.  The expected sample RSD of a group of size ''n'' is
:<m>RSD_n = \sigma \sqrt{\frac{2}{c_{G}(n)}} \approx \sigma \sqrt{2 - \frac{1}{2n} - \frac{7}{16n^2} - \frac{19}{64n^3}}</m>
+
:<math>RSD_n = \sigma \sqrt{\frac{2}{c_{G}(n)}} \approx \sigma \sqrt{2 - \frac{1}{2n} - \frac{7}{16n^2} - \frac{19}{64n^3}}</math>
  
Mean Radius <m>MR = \sigma \sqrt{\frac{\pi}{2}}</m>.  The expected sample MR of a group of size ''n'' is
+
Mean Radius <math>MR = \sigma \sqrt{\frac{\pi}{2}}</math>.  The expected sample MR of a group of size ''n'' is
:<m>MR_n = \sigma \sqrt{\frac{\pi}{2 c_{B}(n)}}\ = \sigma \sqrt{\frac{\pi (n - 1)}{2 n}}</m>
+
:<math>MR_n = \sigma \sqrt{\frac{\pi}{2 c_{B}(n)}}\ = \sigma \sqrt{\frac{\pi (n - 1)}{2 n}}</math>
  
Circular Error Probable <m>CEP = \sigma \sqrt{\ln(4)}</m>
+
Circular Error Probable <math>CEP = \sigma \sqrt{\ln(4)}</math>

Revision as of 12:21, 19 November 2013

Measuring Precision showed how a single parameter σ characterizes the precision of a shooting system.

This σ is the parameter for the Rayleigh distribution with probability density function \(\frac{x}{\sigma^2}e^{-x^2/2\sigma^2}\).

Using the characteristics of the Rayleigh distribution we can immediately compute the three most useful precision measures:

Radial Standard Deviation \(RSD = \sigma \sqrt{2}\). The expected sample RSD of a group of size n is \[RSD_n = \sigma \sqrt{\frac{2}{c_{G}(n)}} \approx \sigma \sqrt{2 - \frac{1}{2n} - \frac{7}{16n^2} - \frac{19}{64n^3}}\]

Mean Radius \(MR = \sigma \sqrt{\frac{\pi}{2}}\). The expected sample MR of a group of size n is \[MR_n = \sigma \sqrt{\frac{\pi}{2 c_{B}(n)}}\ = \sigma \sqrt{\frac{\pi (n - 1)}{2 n}}\]

Circular Error Probable \(CEP = \sigma \sqrt{\ln(4)}\)