Difference between revisions of "Derivation of the Rayleigh Distribution Equation"

From ShotStat
Jump to: navigation, search
(temp...)
 
Line 1: Line 1:
 
The Rayleigh Distribution makes the following assumptions:
 
The Rayleigh Distribution makes the following assumptions:
* <math>\bar{h} \sim \mathcal{N}(\bar{h},\sigma_h^2), \bar{v} \sim \mathcal{N}(\bar{v},\sigma_v^2)</math>
+
* <math>\bar{h} \sim \mathcal{N}(\mu_h,\sigma_h^2), \bar{v} \sim \mathcal{N}(\mu_v,\sigma_v^2)</math>
 
* Horizontal and vertical dispersion are independent.  
 
* Horizontal and vertical dispersion are independent.  
 
* <math>\sigma_h = \sigma_v</math> (realistically <math>\sigma_h \approx \sigma_v</math>)
 
* <math>\sigma_h = \sigma_v</math> (realistically <math>\sigma_h \approx \sigma_v</math>)
Line 7: Line 7:
  
 
for which the PDF is given by:<br />
 
for which the PDF is given by:<br />
&nbsp;&nbsp;&nbsp;&nbsp;<math>PDF_{r_i}(r) = \frac{r}{\sigma^2}e^{-r^2/2\sigma^2}</math>
+
&nbsp;&nbsp;&nbsp;&nbsp;<math>PDF(r) = \frac{r}{\sigma^2 }
 +
      \exp\left(
 +
        - \frac{r^2}{2\sigma^2}  
 +
      \right)
 +
  </math>
  
 
The PDF can be derived in the following two methods.  
 
The PDF can be derived in the following two methods.  
Line 20: Line 24:
 
       \exp\left(
 
       \exp\left(
 
         -\frac{1}{2(1-\rho^2)}\left[
 
         -\frac{1}{2(1-\rho^2)}\left[
           \frac{(h-\bar{h})^2}{\sigma_h^2} +
+
           \frac{(h-\mu_h)^2}{\sigma_h^2} +
           \frac{(v-\bar{v})^2}{\sigma_v^2} -
+
           \frac{(v-\mu_v)^2}{\sigma_v^2} -
           \frac{2\rho(h-\bar{h})(v-\bar{v})}{\sigma_h \sigma_v}
+
           \frac{2\rho(h-\mu_h)(v-\mu_v)}{\sigma_h \sigma_v}
 
         \right]
 
         \right]
 
       \right)
 
       \right)
Line 34: Line 38:
 
       \exp\left(
 
       \exp\left(
 
         -\frac{1}{2}\left[
 
         -\frac{1}{2}\left[
           \frac{(h-\bar{h})^2}{\sigma_h^2} +
+
           \frac{(h-\mu_h)^2}{\sigma_h^2} +
           \frac{(v-\bar{v})^2}{\sigma_v^2}  
+
           \frac{(v-\mu_v)^2}{\sigma_v^2}  
 
         \right]
 
         \right]
 
       \right)
 
       \right)
Line 48: Line 52:
 
       \exp\left(
 
       \exp\left(
 
         -\left[
 
         -\left[
           \frac{(h-\bar{h})^2 + (v-\bar{v})^2}{2\sigma^2}  
+
           \frac{(h-\mu_h)^2 + (v-\mu_h)^2}{2\sigma^2}  
 
         \right]
 
         \right]
 
       \right)
 
       \right)
 
   </math>
 
   </math>
  
Letting <math>r^2 = (h-\bar{h})^2 + (v-\bar{v})^2</math> the equation becomes:  
+
Letting <math>r^2 = (h-\mu_h)^2 + (v-\mu_v)^2</math> the equation becomes:  
  
 
&nbsp;&nbsp;&nbsp;&nbsp;<math>
 
&nbsp;&nbsp;&nbsp;&nbsp;<math>
Line 63: Line 67:
 
   </math>
 
   </math>
  
By transforming to the polar coordinate system one has:<br />
+
Now transforming to the polar coordinate system:<br />
  
 +
** ok, here I'm lost **
 +
 +
and finally:<br />
 
&nbsp;&nbsp;&nbsp;&nbsp;<math>
 
&nbsp;&nbsp;&nbsp;&nbsp;<math>
     f(h,v) =
+
     f(r) =
       \frac{1}{2 \pi  \sigma^2 }
+
       \frac{r}{\sigma^2 }
 
       \exp\left(
 
       \exp\left(
 
         - \frac{r^2}{2\sigma^2}  
 
         - \frac{r^2}{2\sigma^2}  

Revision as of 21:29, 2 June 2015

The Rayleigh Distribution makes the following assumptions:

  • \(\bar{h} \sim \mathcal{N}(\mu_h,\sigma_h^2), \bar{v} \sim \mathcal{N}(\mu_v,\sigma_v^2)\)
  • Horizontal and vertical dispersion are independent.
  • \(\sigma_h = \sigma_v\) (realistically \(\sigma_h \approx \sigma_v\))
  • \(\rho = 0\)
  • No Fliers

for which the PDF is given by:
    \(PDF(r) = \frac{r}{\sigma^2 } \exp\left( - \frac{r^2}{2\sigma^2} \right) \)

The PDF can be derived in the following two methods.

Simplification of the Bivariate Normal Distribution

Using the assumptions above, the Rayleigh Distribution is easily simplified from the Bivariate Normal Distribution which has the equation:

    \( f(h,v) = \frac{1}{2 \pi \sigma_h \sigma_v \sqrt{1-\rho^2}} \exp\left( -\frac{1}{2(1-\rho^2)}\left[ \frac{(h-\mu_h)^2}{\sigma_h^2} + \frac{(v-\mu_v)^2}{\sigma_v^2} - \frac{2\rho(h-\mu_h)(v-\mu_v)}{\sigma_h \sigma_v} \right] \right) \)

By substituting \(\rho = 0\) the equation reduces to:

    \( f(h,v) = \frac{1}{2 \pi \sigma_h \sigma_v } \exp\left( -\frac{1}{2}\left[ \frac{(h-\mu_h)^2}{\sigma_h^2} + \frac{(v-\mu_v)^2}{\sigma_v^2} \right] \right) \)


Since \(\sigma_h\) and \(\sigma_v\) are equal, substitute \(\sigma\) for each, then collect terms in the exponential, after which the equation reduces to:

    \( f(h,v) = \frac{1}{2 \pi \sigma^2 } \exp\left( -\left[ \frac{(h-\mu_h)^2 + (v-\mu_h)^2}{2\sigma^2} \right] \right) \)

Letting \(r^2 = (h-\mu_h)^2 + (v-\mu_v)^2\) the equation becomes:

    \( f(h,v) = \frac{1}{2 \pi \sigma^2 } \exp\left( - \frac{r^2}{2\sigma^2} \right) \)

Now transforming to the polar coordinate system:

** ok, here I'm lost **

and finally:
    \( f(r) = \frac{r}{\sigma^2 } \exp\left( - \frac{r^2}{2\sigma^2} \right) \)

Derivation from First Principles