Difference between revisions of "Derivation of the Rayleigh Distribution Equation"

From ShotStat
Jump to: navigation, search
(Derivation from First Principles: still working on this :-()
(Derivation from First Principles)
Line 100: Line 100:
 
&nbsp;&nbsp;&nbsp;&nbsp;<math>Z_v = \left(\frac{(\bar{v}-\mu_v)}{\sigma/\sqrt n}\right)^2 = \frac n{\sigma^2}(\bar{v}-\mu_v)^2\sim \chi^2(1)</math><br />
 
&nbsp;&nbsp;&nbsp;&nbsp;<math>Z_v = \left(\frac{(\bar{v}-\mu_v)}{\sigma/\sqrt n}\right)^2 = \frac n{\sigma^2}(\bar{v}-\mu_v)^2\sim \chi^2(1)</math><br />
  
Define random the variable <math>W</math> which will have a Chi-Squared Distribution with two degrees of freedom like:<br />  
+
Define random the variable <math>W</math> which will have a Chi-Squared Distribution with two degrees of freedom as:<br />  
  
 
&nbsp;&nbsp;&nbsp;&nbsp;<math>W = Z_x + Z_y =\frac n{\sigma^2}\left((\bar{v}-\mu_v)^2+(\bar{v}-\mu_v)^2\right)\sim \chi^2(2)</math>
 
&nbsp;&nbsp;&nbsp;&nbsp;<math>W = Z_x + Z_y =\frac n{\sigma^2}\left((\bar{v}-\mu_v)^2+(\bar{v}-\mu_v)^2\right)\sim \chi^2(2)</math>
Line 106: Line 106:
 
Rescale the variable <math>W</math> by <math>\frac {\sigma^2}{n}</math> and denote the new variable <math>w_n</math>:<br />
 
Rescale the variable <math>W</math> by <math>\frac {\sigma^2}{n}</math> and denote the new variable <math>w_n</math>:<br />
  
&nbsp;&nbsp;&nbsp;&nbsp;<math>w_n=\frac {\sigma^2}nW</math>
+
&nbsp;&nbsp;&nbsp;&nbsp;<math>w_n=\frac {\sigma^2}nW</math> and note that <math>w_n=r_n^2</math>
  
By the properties of a chi-square random variable, we have
+
By the properties of a chi-square random variable, we have:<br />
$$w_n \sim \text {Gamma}(k=1, \theta = 2\sigma^2/n) = \text{Exp}(2\sigma^2/n)$$
+
 
i.e.
+
&nbsp;&nbsp;&nbsp;&nbsp;<math>w_n \sim \text {Gamma}(k=1, \theta = 2\sigma^2/n) = \text{Exp}(2\sigma^2/n)</math>
$$f_{W_n}(w_n) = \frac {n}{2\sigma^2}\cdot \exp\Big \{-\frac {n}{2\sigma^2} w_n\Big\}$$
+
 
 +
so:<br />
 +
 
 +
&nbsp;&nbsp;&nbsp;&nbsp;<math>PDF(w_n) = \frac {n}{2\sigma^2}\cdot \exp\Big \{-\frac {n}{2\sigma^2} w_n\Big\}</math>
  
 
But from above <math>r_n = \sqrt {w_n}</math>. By the change-of-variable formula we have
 
But from above <math>r_n = \sqrt {w_n}</math>. By the change-of-variable formula we have

Revision as of 01:29, 3 June 2015

The Rayleigh Distribution makes the following assumptions:

  • \(h \sim \mathcal{N}(\mu_h,\sigma_h^2)\), and \(\bar{v} \sim \mathcal{N}(\mu_v,\sigma_v^2)\)
  • Horizontal and vertical dispersion are independent.
  • \(\sigma_h = \sigma_v\) (realistically \(\sigma_h \approx \sigma_v\))
  • \(\rho = 0\)
  • No Fliers

for which the PDF is given by:
    \(PDF(r) = \frac{r}{\sigma^2 } \exp\left( - \frac{r^2}{2\sigma^2} \right) \)

The PDF can be derived in the following two methods.

Simplification of the Bivariate Normal Distribution

Using the assumptions above, the Rayleigh Distribution is easily simplified from the Bivariate Normal Distribution which has the equation:

    \( f(h,v) = \frac{1}{2 \pi \sigma_h \sigma_v \sqrt{1-\rho^2}} \exp\left( -\frac{1}{2(1-\rho^2)}\left[ \frac{(h-\mu_h)^2}{\sigma_h^2} + \frac{(v-\mu_v)^2}{\sigma_v^2} - \frac{2\rho(h-\mu_h)(v-\mu_v)}{\sigma_h \sigma_v} \right] \right) \)

By substituting \(\rho = 0\) the equation reduces to:

    \( f(h,v) = \frac{1}{2 \pi \sigma_h \sigma_v } \exp\left( -\frac{1}{2}\left[ \frac{(h-\mu_h)^2}{\sigma_h^2} + \frac{(v-\mu_v)^2}{\sigma_v^2} \right] \right) \)


Since \(\sigma_h\) and \(\sigma_v\) are equal, substitute \(\sigma\) for each, then collect terms in the exponential, after which the equation reduces to:

    \( f(h,v) = \frac{1}{2 \pi \sigma^2 } \exp\left( -\left[ \frac{(h-\mu_h)^2 + (v-\mu_h)^2}{2\sigma^2} \right] \right) \)

Letting \(r^2 = (h-\mu_h)^2 + (v-\mu_v)^2\) the equation becomes:

    \( f(h,v) = \frac{1}{2 \pi \sigma^2 } \exp\left( - \frac{r^2}{2\sigma^2} \right) \)

Now transforming to the polar coordinate system:

** ok, here I'm lost **

and finally:
    \( f(r) = \frac{r}{\sigma^2 } \exp\left( - \frac{r^2}{2\sigma^2} \right) \)

Derivation from First Principles

Given the assumptions in the starting section we again substitute \(\sigma\) for both \(\sigma_h\) and \(\sigma_v\). This simplifies the distributions of \(h\) and \(v\) to:

     \(h \sim \mathcal{N}(\mu_h,\sigma^2)\), and \(v \sim \mathcal{N}(\mu_v,\sigma^2)\)

Now we take some number \(n\) of shots \(( n \geq 1)\)and calculate their center.

     \(\bar{h} \sim \mathcal{N}(\mu_h,\sigma^2/n)\), and \(\bar{v} \sim \mathcal{N}(\mu_v,\sigma^2/n)\)

Let \(r_n\) be the distance of this sample center \((\bar{h}, \bar{v})\) from the true distribution center \((\mu_h, \mu_v)\) as:

    \(r_n = \sqrt{(\bar{h}-\mu_h)^2 + (\bar{v}-\mu_v)^2}\)

Define random variables \(Z_h\) and \(Z_v\) as the squared Studentized horizontal and vertical errors by dividing by the respective standard deviations. Each of these variables with have a Chi-Squared Distribution with one degree of freedom.

    \(Z_h = \left(\frac{(\bar{h}-\mu_h)}{\sigma/\sqrt n}\right)^2 = \frac n{\sigma^2}(\bar{h}-\mu_h)^2 \sim \chi^2(1)\)

    \(Z_v = \left(\frac{(\bar{v}-\mu_v)}{\sigma/\sqrt n}\right)^2 = \frac n{\sigma^2}(\bar{v}-\mu_v)^2\sim \chi^2(1)\)

Define random the variable \(W\) which will have a Chi-Squared Distribution with two degrees of freedom as:

    \(W = Z_x + Z_y =\frac n{\sigma^2}\left((\bar{v}-\mu_v)^2+(\bar{v}-\mu_v)^2\right)\sim \chi^2(2)\)

Rescale the variable \(W\) by \(\frac {\sigma^2}{n}\) and denote the new variable \(w_n\):

    \(w_n=\frac {\sigma^2}nW\) and note that \(w_n=r_n^2\)

By the properties of a chi-square random variable, we have:

    \(w_n \sim \text {Gamma}(k=1, \theta = 2\sigma^2/n) = \text{Exp}(2\sigma^2/n)\)

so:

    \(PDF(w_n) = \frac {n}{2\sigma^2}\cdot \exp\Big \{-\frac {n}{2\sigma^2} w_n\Big\}\)

But from above \(r_n = \sqrt {w_n}\). By the change-of-variable formula we have

    \(w_n = r_n^2 \Rightarrow \frac {dw_n}{dr_n} = 2r_n\)

and so:

    \( PDF(r_n) = 2r_n\frac {n}{2\sigma^2}\cdot \exp\Big \{-\frac {n}{2\sigma^2} r_n^2\Big\} = \frac {r_n}{\alpha^2} \exp\Big \{-\frac {r_n^2}{2\alpha^2} \Big\},\;\;\alpha \equiv \sigma/\sqrt n\)

So for any number of shots \(n\), the mean distance \(r_n\) follows a Rayleigh distribution with parameter \(\alpha = \sigma / \sqrt{n}\) where \(\sigma\) is the Rayleigh shape factor for one shot.

Thanks to Alecos Papadopoulos for the solution.