Derivation of the Rayleigh Distribution Equation

From ShotStat
Revision as of 22:30, 2 June 2015 by Herb (talk | contribs)
Jump to: navigation, search

The Rayleigh Distribution makes the following assumptions:

  • \(h \sim \mathcal{N}(\mu_h,\sigma_h^2)\), and \(\bar{v} \sim \mathcal{N}(\mu_v,\sigma_v^2)\)
  • Horizontal and vertical dispersion are independent.
  • \(\sigma_h = \sigma_v\) (realistically \(\sigma_h \approx \sigma_v\))
  • \(\rho = 0\)
  • No Fliers

for which the PDF is given by:
    \(PDF(r) = \frac{r}{\sigma^2 } \exp\left( - \frac{r^2}{2\sigma^2} \right) \)

The PDF can be derived in the following two methods.

Simplification of the Bivariate Normal Distribution

Using the assumptions above, the Rayleigh Distribution is easily simplified from the Bivariate Normal Distribution which has the equation:

    \( f(h,v) = \frac{1}{2 \pi \sigma_h \sigma_v \sqrt{1-\rho^2}} \exp\left( -\frac{1}{2(1-\rho^2)}\left[ \frac{(h-\mu_h)^2}{\sigma_h^2} + \frac{(v-\mu_v)^2}{\sigma_v^2} - \frac{2\rho(h-\mu_h)(v-\mu_v)}{\sigma_h \sigma_v} \right] \right) \)

By substituting \(\rho = 0\) the equation reduces to:

    \( f(h,v) = \frac{1}{2 \pi \sigma_h \sigma_v } \exp\left( -\frac{1}{2}\left[ \frac{(h-\mu_h)^2}{\sigma_h^2} + \frac{(v-\mu_v)^2}{\sigma_v^2} \right] \right) \)


Since \(\sigma_h\) and \(\sigma_v\) are equal, substitute \(\sigma\) for each, then collect terms in the exponential, after which the equation reduces to:

    \( f(h,v) = \frac{1}{2 \pi \sigma^2 } \exp\left( -\left[ \frac{(h-\mu_h)^2 + (v-\mu_h)^2}{2\sigma^2} \right] \right) \)

Letting \(r^2 = (h-\mu_h)^2 + (v-\mu_v)^2\) the equation becomes:

    \( f(h,v) = \frac{1}{2 \pi \sigma^2 } \exp\left( - \frac{r^2}{2\sigma^2} \right) \)

Now transforming to the polar coordinate system:

** ok, here I'm lost **

and finally:
    \( f(r) = \frac{r}{\sigma^2 } \exp\left( - \frac{r^2}{2\sigma^2} \right) \)

Derivation from First Principles

Given the assumptions in the starting section we again substitute \(\sigma\) for both \(\sigma_h\) and \(\sigma_v\). This simplifies the distributions of \(h\) and \(v\) to:

     \(h \sim \mathcal{N}(\mu_h,\sigma^2)\), and \(v \sim \mathcal{N}(\mu_v,\sigma^2)\)

Now we take some number \(n\) of shots and calculate their center.

     \(\bar{h} \sim \mathcal{N}(\mu_h,\sigma^2/n)\), and \(\bar{v} \sim \mathcal{N}(\mu_v,\sigma^2/n)\)

Let \(r_n\) be the distance of this sample center \((\bar{h}, \bar{v})\) from the true distribution center \((\mu_h, \mu_v)\) as:

    \(r_n = \sqrt{(\bar{h}-\mu_h)^2 + (\bar{v}-\mu_v)^2}\)

Define random variables \(Z_h\) and \(Z_v\) as the Studentized horizontal and vertical errors by dividing by the respective standard deviations. Each of these variables with have a Chi-Squared Distribution with one degree of freedom.

    \(Z_x = \left(\frac{\bar X}{\sigma/\sqrt n}\right)^2 = \frac n{\sigma^2}\bar X^2 \sim \chi^2(1)\)

    \(Z_y = \left(\frac{\bar Y}{\sigma/\sqrt n}\right)^2 =\frac n{\sigma^2}\bar Y^2\sim \chi^2(1)\)

Define random variables \(W\), which will have a Chi-Squared Distribution with two degrees of freedom like:

$$W = Z_x + Z_y =\frac n{\sigma^2}\left(\bar X^2+\bar Y^2\right)\sim \chi^2(2)$$

By the properties of a chi-square random variable, we have $$W_n=\frac {\sigma^2}nW \sim \text {Gamma}(k=1, \theta = 2\sigma^2/n) = \text{Exp}(2\sigma^2/n)$$ i.e. $$f_{W_n}(w_n) = \frac {n}{2\sigma^2}\cdot \exp\Big \{-\frac {n}{2\sigma^2} w_n\Big\}$$

Define \(R_n = \sqrt {W_n}\). By the change-of-variable formula we have

$$W_n = R_n^2 \Rightarrow \frac {dW_n}{dR_n} = 2R_n$$ and so

$$f_{R_n}(r_n) = 2r_n\frac {n}{2\sigma^2}\cdot \exp\Big \{-\frac {n}{2\sigma^2} r_n^2\Big\} = \frac {r_n}{\alpha^2} \exp\Big \{-\frac {r_n^2}{2\alpha^2} \Big\},\;\;\alpha \equiv \sigma/\sqrt n$$

So \(R_n\) follows a Rayleigh distribution with parameter \(\alpha = \sigma / \sqrt{n}\).

Thanks to Alecos Papadopoulos for the solution.